瞬态非饱和条件下污染物输运模型在室内尾砂柱试验中的应用

IF 1.1 Q4 ENGINEERING, GEOLOGICAL Soils and Rocks Pub Date : 2022-05-09 DOI:10.28927/sr.2022.076021
Eliu Carbaja, Mariana Diniz, R. Rodríguez-Pacheco, A. Cavalcante
{"title":"瞬态非饱和条件下污染物输运模型在室内尾砂柱试验中的应用","authors":"Eliu Carbaja, Mariana Diniz, R. Rodríguez-Pacheco, A. Cavalcante","doi":"10.28927/sr.2022.076021","DOIUrl":null,"url":null,"abstract":"Mining is an important economic activity in the modern world. However, despite the generated benefits, mining produces tremendous volumes of tailings, an environmental liability with numerous adverse effects. Researches about contaminant transport in tailings dam are important to assess the degree of contamination and to propose preventive or remedial measures. In geotechnical practice, the flow of solutes is generally characterized by numerical solution of the Richards equation to describe water movement followed by advection-dispersion equation to describe contaminant movement. This study aimed to model and simulate contaminant transport in a laboratory column test, using a new analytical formulation and mathematical codes, through tailings in transient unsaturated conditions. The analytical solution for the Richards equation was used to simulate the variation in the volumetric water content and to determine the transient contaminant plume using the advection-dispersion equation subsequently. The models were used to calibrate experimental data from hydraulic characterization and contamination tests. Finally, the normalized contaminant plume (cw/c0) was simulated as a function of time and space. Comparisons with experimental data showed that the analytical formulations adequately expressed the process of contaminant infiltration through the unsaturated porous medium. The formulations offered effectively and are configured as a new approach to solve various contamination problems in transient unsaturated conditions, providing insights into many complex processes that occur in the lab tests and requires far less computational effort compared with current programs to modeling the solute transport using numerical solutions, as the versatile commercial Software HYDRUS.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contaminant transport model in transient and unsaturated conditions applied to laboratory column test with tailings\",\"authors\":\"Eliu Carbaja, Mariana Diniz, R. Rodríguez-Pacheco, A. Cavalcante\",\"doi\":\"10.28927/sr.2022.076021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining is an important economic activity in the modern world. However, despite the generated benefits, mining produces tremendous volumes of tailings, an environmental liability with numerous adverse effects. Researches about contaminant transport in tailings dam are important to assess the degree of contamination and to propose preventive or remedial measures. In geotechnical practice, the flow of solutes is generally characterized by numerical solution of the Richards equation to describe water movement followed by advection-dispersion equation to describe contaminant movement. This study aimed to model and simulate contaminant transport in a laboratory column test, using a new analytical formulation and mathematical codes, through tailings in transient unsaturated conditions. The analytical solution for the Richards equation was used to simulate the variation in the volumetric water content and to determine the transient contaminant plume using the advection-dispersion equation subsequently. The models were used to calibrate experimental data from hydraulic characterization and contamination tests. Finally, the normalized contaminant plume (cw/c0) was simulated as a function of time and space. Comparisons with experimental data showed that the analytical formulations adequately expressed the process of contaminant infiltration through the unsaturated porous medium. The formulations offered effectively and are configured as a new approach to solve various contamination problems in transient unsaturated conditions, providing insights into many complex processes that occur in the lab tests and requires far less computational effort compared with current programs to modeling the solute transport using numerical solutions, as the versatile commercial Software HYDRUS.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.076021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.076021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

摘要

采矿是现代世界的一项重要经济活动。然而,尽管产生了效益,采矿业仍产生了大量的尾矿,这是一种具有许多不利影响的环境责任。研究尾矿坝中污染物的迁移规律,对于评价尾矿坝的污染程度和提出防治措施具有重要意义。在岩土工程实践中,溶质流动的特征通常是理查兹方程的数值解来描述水的运动,然后是平流-扩散方程来描述污染物的运动。本研究旨在使用一种新的分析公式和数学代码,在实验室柱试验中模拟污染物在瞬态不饱和条件下通过尾矿的迁移。Richards方程的解析解用于模拟体积含水量的变化,并随后使用平流-扩散方程确定瞬态污染物羽流。这些模型用于校准水力特性和污染测试的实验数据。最后,将归一化污染物羽流(cw/c0)模拟为时间和空间的函数。与实验数据的比较表明,分析公式充分表达了污染物通过非饱和多孔介质渗透的过程。该配方有效地提供并被配置为解决瞬态不饱和条件下各种污染问题的新方法,提供了对实验室测试中发生的许多复杂过程的深入了解,并且与使用数值解建模溶质迁移的当前程序相比,所需的计算工作量要小得多,作为通用的商业软件HYDRUS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contaminant transport model in transient and unsaturated conditions applied to laboratory column test with tailings
Mining is an important economic activity in the modern world. However, despite the generated benefits, mining produces tremendous volumes of tailings, an environmental liability with numerous adverse effects. Researches about contaminant transport in tailings dam are important to assess the degree of contamination and to propose preventive or remedial measures. In geotechnical practice, the flow of solutes is generally characterized by numerical solution of the Richards equation to describe water movement followed by advection-dispersion equation to describe contaminant movement. This study aimed to model and simulate contaminant transport in a laboratory column test, using a new analytical formulation and mathematical codes, through tailings in transient unsaturated conditions. The analytical solution for the Richards equation was used to simulate the variation in the volumetric water content and to determine the transient contaminant plume using the advection-dispersion equation subsequently. The models were used to calibrate experimental data from hydraulic characterization and contamination tests. Finally, the normalized contaminant plume (cw/c0) was simulated as a function of time and space. Comparisons with experimental data showed that the analytical formulations adequately expressed the process of contaminant infiltration through the unsaturated porous medium. The formulations offered effectively and are configured as a new approach to solve various contamination problems in transient unsaturated conditions, providing insights into many complex processes that occur in the lab tests and requires far less computational effort compared with current programs to modeling the solute transport using numerical solutions, as the versatile commercial Software HYDRUS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Rocks
Soils and Rocks ENGINEERING, GEOLOGICAL-
CiteScore
1.00
自引率
20.00%
发文量
49
期刊介绍: Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).
期刊最新文献
Discussion of “Systematic literature review and mapping of the prediction of pile capacities” Primary consolidation settlement due to ramp loading: Terzaghi (1943) method revisited Behavior of clayey soil treated with nano magnesium oxide material Numerical modeling of the behavior of a surface foundation located in the proximity of a slope Analysis of sorption/desorption of cadmium and lead in the legal amazon soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1