一种影响亚音速压缩机时钟效应的新机制

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY Applied Sciences-Basel Pub Date : 2023-09-07 DOI:10.3390/app131810094
Han Niu, Jiang Chen, Hang Xiang
{"title":"一种影响亚音速压缩机时钟效应的新机制","authors":"Han Niu, Jiang Chen, Hang Xiang","doi":"10.3390/app131810094","DOIUrl":null,"url":null,"abstract":"This paper investigates the clocking effect in subsonic compressor element stages and the influence of design parameters on the flow mechanism. We focus on the relationship between the wake-induced separation loss and wake mixing loss and the unsteady mechanism in the wake flow process without considering the transition through several steady and unsteady numerical simulations aimed at a series of subsonic compressor element stages. The simulation results indicate that the performance difference at various indexing positions depends on the relationship between wake mixing loss and wake-induced separation loss for different compressor designs and operating conditions. Furthermore, the pressure transport caused by the negative jet of the Stator 0 wake in Rotor 1 creates a local acceleration region called SFAF, and a decrease in its absolute flow angle reduces the Stator 1 separation. Sufficient rim work of the rotor at highly loaded operating conditions is the basis for generating an effective SFAF. Furthermore, the fore-loading blade of Rotor 1 significantly reduces suction surface pressure drop, and a small angle between the stagger angles of Stator 0 and Rotor 1 increases the unsteady rotor load caused by the upstream wake to the total rotor load, both of which enhance SFAF.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Influence Mechanism of Clocking Effect in Subsonic Compressor\",\"authors\":\"Han Niu, Jiang Chen, Hang Xiang\",\"doi\":\"10.3390/app131810094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the clocking effect in subsonic compressor element stages and the influence of design parameters on the flow mechanism. We focus on the relationship between the wake-induced separation loss and wake mixing loss and the unsteady mechanism in the wake flow process without considering the transition through several steady and unsteady numerical simulations aimed at a series of subsonic compressor element stages. The simulation results indicate that the performance difference at various indexing positions depends on the relationship between wake mixing loss and wake-induced separation loss for different compressor designs and operating conditions. Furthermore, the pressure transport caused by the negative jet of the Stator 0 wake in Rotor 1 creates a local acceleration region called SFAF, and a decrease in its absolute flow angle reduces the Stator 1 separation. Sufficient rim work of the rotor at highly loaded operating conditions is the basis for generating an effective SFAF. Furthermore, the fore-loading blade of Rotor 1 significantly reduces suction surface pressure drop, and a small angle between the stagger angles of Stator 0 and Rotor 1 increases the unsteady rotor load caused by the upstream wake to the total rotor load, both of which enhance SFAF.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810094\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810094","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了亚音速压缩机元件级的计时效应以及设计参数对流动机制的影响。通过针对一系列亚音速压缩机元件级的几次稳态和非稳态数值模拟,我们重点研究了尾流诱导分离损失和尾流混合损失之间的关系,以及尾流过程中的非稳态机制,而不考虑过渡。仿真结果表明,对于不同的压缩机设计和运行条件,不同分度位置的性能差异取决于尾流混合损失和尾流诱导分离损失之间的关系。此外,由转子1中定子0尾流的负射流引起的压力传输产生了一个称为SFAF的局部加速区域,其绝对流动角的减小减少了定子1的分离。转子在高负荷运行条件下的足够边缘功是产生有效SFAF的基础。此外,转子1的前加载叶片显著降低了吸力面压降,定子0和转子1的交错角之间的小角度增加了由上游尾流引起的非定常转子负载对总转子负载的影响,两者都增强了SFAF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Influence Mechanism of Clocking Effect in Subsonic Compressor
This paper investigates the clocking effect in subsonic compressor element stages and the influence of design parameters on the flow mechanism. We focus on the relationship between the wake-induced separation loss and wake mixing loss and the unsteady mechanism in the wake flow process without considering the transition through several steady and unsteady numerical simulations aimed at a series of subsonic compressor element stages. The simulation results indicate that the performance difference at various indexing positions depends on the relationship between wake mixing loss and wake-induced separation loss for different compressor designs and operating conditions. Furthermore, the pressure transport caused by the negative jet of the Stator 0 wake in Rotor 1 creates a local acceleration region called SFAF, and a decrease in its absolute flow angle reduces the Stator 1 separation. Sufficient rim work of the rotor at highly loaded operating conditions is the basis for generating an effective SFAF. Furthermore, the fore-loading blade of Rotor 1 significantly reduces suction surface pressure drop, and a small angle between the stagger angles of Stator 0 and Rotor 1 increases the unsteady rotor load caused by the upstream wake to the total rotor load, both of which enhance SFAF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Study on Shear Resistance and Structural Performance of Corrugated Steel–Concrete Composite Deck Clustering Analysis of Wind Turbine Alarm Sequences Based on Domain Knowledge-Fused Word2vec Unraveling Functional Dysphagia: A Game-Changing Automated Machine-Learning Diagnostic Approach Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Cu Deposit in Gangdese Metallogenic Belt, Tibet, Western China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1