用于实时环境监测的M2M体系结构

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Iteckne Pub Date : 2021-03-08 DOI:10.15332/ITECKNE.V18I1.2531
Elaine Cubillas Hernández, Caridad Anías Calderón, Tatiana Delgado Fernández
{"title":"用于实时环境监测的M2M体系结构","authors":"Elaine Cubillas Hernández, Caridad Anías Calderón, Tatiana Delgado Fernández","doi":"10.15332/ITECKNE.V18I1.2531","DOIUrl":null,"url":null,"abstract":"In the Institute of Tropical Geography (IGT), and in the rest of the centers that develop the Environmental Information System of the country, environmental measurements are not obtained in real-time. This is because the technology used to communicate this information, from the sensors that capture it to the center where it is processed, is obsolete. The objective of this work is to provide a solution to the problems raised above using Machine to Machine communication (M2M), as part of the Internet of Things (IoT) technology. To achieve the above, the M2M architecture defined by the European Telecommunications Standards Institute was revised and, based on it, the one that should be used to obtain environmental data in real-time was specified. Then, a geographical area with special characteristics was selected, located in a difficult-to-access pre-mountain zone on the outskirts of the Consolación del Sur municipality, in the Pinar del Río province of Cuba, where environmental factors of interest for the country are currently monitored using archaic methods. In the M2M area of this scenario, several alternatives were analyzed to obtain the data, which allowed selecting the most appropriate one, which is the one explained in this work","PeriodicalId":53892,"journal":{"name":"Revista Iteckne","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2M Architecture for environmental monitoring in real time\",\"authors\":\"Elaine Cubillas Hernández, Caridad Anías Calderón, Tatiana Delgado Fernández\",\"doi\":\"10.15332/ITECKNE.V18I1.2531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Institute of Tropical Geography (IGT), and in the rest of the centers that develop the Environmental Information System of the country, environmental measurements are not obtained in real-time. This is because the technology used to communicate this information, from the sensors that capture it to the center where it is processed, is obsolete. The objective of this work is to provide a solution to the problems raised above using Machine to Machine communication (M2M), as part of the Internet of Things (IoT) technology. To achieve the above, the M2M architecture defined by the European Telecommunications Standards Institute was revised and, based on it, the one that should be used to obtain environmental data in real-time was specified. Then, a geographical area with special characteristics was selected, located in a difficult-to-access pre-mountain zone on the outskirts of the Consolación del Sur municipality, in the Pinar del Río province of Cuba, where environmental factors of interest for the country are currently monitored using archaic methods. In the M2M area of this scenario, several alternatives were analyzed to obtain the data, which allowed selecting the most appropriate one, which is the one explained in this work\",\"PeriodicalId\":53892,\"journal\":{\"name\":\"Revista Iteckne\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Iteckne\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15332/ITECKNE.V18I1.2531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iteckne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15332/ITECKNE.V18I1.2531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在热带地理研究所(IGT)和开发该国环境信息系统的其他中心,环境测量并不是实时获得的。这是因为用于传递这些信息的技术,从捕捉信息的传感器到处理信息的中心,已经过时了。这项工作的目的是使用机器对机器通信(M2M)作为物联网(IoT)技术的一部分,为上述问题提供解决方案。为了实现上述目标,对欧洲电信标准协会定义的M2M架构进行了修订,并在此基础上指定了应用于实时获取环境数据的架构。然后,选择了一个具有特殊特征的地理区域,该区域位于古巴比那尔德里奥省南康索拉孔市郊区一个难以进入的山前地带,目前正在使用古老的方法监测该国感兴趣的环境因素。在该场景的M2M领域,分析了几种备选方案以获得数据,从而选择了最合适的方案,这就是本工作中解释的方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M2M Architecture for environmental monitoring in real time
In the Institute of Tropical Geography (IGT), and in the rest of the centers that develop the Environmental Information System of the country, environmental measurements are not obtained in real-time. This is because the technology used to communicate this information, from the sensors that capture it to the center where it is processed, is obsolete. The objective of this work is to provide a solution to the problems raised above using Machine to Machine communication (M2M), as part of the Internet of Things (IoT) technology. To achieve the above, the M2M architecture defined by the European Telecommunications Standards Institute was revised and, based on it, the one that should be used to obtain environmental data in real-time was specified. Then, a geographical area with special characteristics was selected, located in a difficult-to-access pre-mountain zone on the outskirts of the Consolación del Sur municipality, in the Pinar del Río province of Cuba, where environmental factors of interest for the country are currently monitored using archaic methods. In the M2M area of this scenario, several alternatives were analyzed to obtain the data, which allowed selecting the most appropriate one, which is the one explained in this work
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Iteckne
Revista Iteckne ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
3
审稿时长
24 weeks
期刊最新文献
Predicting the strength of seashell concrete using Adaptive Neuro-Fuzzy Inference System: An experimental study Influencia de las cenizas de cascarilla de arroz como reemplazo parcial del cemento utilizado para la elaboración del concreto: una revisión de literatura Towards the Automation of Data Networks Evaluación de un pavimento flexible aplicando el método Pavement Condition Index - PCI Desempeño mecánico del concreto convencional reemplazando agregado grueso con polietileno de tereftalato
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1