Y. Nagasaki, Gen Kamada, T. Katana, S. Sasaki, D. Miyagi, M. Tsuda
{"title":"具有稳定悬浮系统的磁悬浮型隔震模型装置水平振动传递特性","authors":"Y. Nagasaki, Gen Kamada, T. Katana, S. Sasaki, D. Miyagi, M. Tsuda","doi":"10.2221/jcsj.55.117","DOIUrl":null,"url":null,"abstract":"Synopsis: This paper discusses the demonstration of a stable levitation (SL) system for a magnetic levitation type seismic isolation device using a high-temperature superconducting (HTS) bulk. The SL system utilizes a restoring force between an HTS bulk and permanent magnet (PM) to maintain the stable levitation of a base-isolation object. We first measured the restoring force between the HTS bulk and PM, and then demonstrated the performance of the SL system using a magnetic levitation type seismic isolation model device with a radial arrangement of HTS bulks and a PM rail. The SL system with the HTS bulk can reduce small vibration and displacement during the normal period of operation without experiencing a large disturbance. We also demonstrated that, when a large disturbance was applied, the transmission of horizontal vibration to the base-isolation object via the SL system was eliminated by decoupling the magnetic coupling between the HTS bulk and PM. Furthermore, the vibration transmissibility at any vibration frequency to the base-isolation object was reduced by incorporating an HTS bulk damper and eddy current damper in the model device. These results suggest that a SL system used together with an HTS bulk can realize both the stable levitation of a base-isolation object during the normal period of operation as well as the elimination of the horizontal vibration transmission when a large vibration is applied.","PeriodicalId":93144,"journal":{"name":"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]","volume":"55 1","pages":"117-124"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontal Vibration Transmission Characteristics of a Magnetic Levitation Type Seismic Isolation Model Device with Stable Levitation System\",\"authors\":\"Y. Nagasaki, Gen Kamada, T. Katana, S. Sasaki, D. Miyagi, M. Tsuda\",\"doi\":\"10.2221/jcsj.55.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: This paper discusses the demonstration of a stable levitation (SL) system for a magnetic levitation type seismic isolation device using a high-temperature superconducting (HTS) bulk. The SL system utilizes a restoring force between an HTS bulk and permanent magnet (PM) to maintain the stable levitation of a base-isolation object. We first measured the restoring force between the HTS bulk and PM, and then demonstrated the performance of the SL system using a magnetic levitation type seismic isolation model device with a radial arrangement of HTS bulks and a PM rail. The SL system with the HTS bulk can reduce small vibration and displacement during the normal period of operation without experiencing a large disturbance. We also demonstrated that, when a large disturbance was applied, the transmission of horizontal vibration to the base-isolation object via the SL system was eliminated by decoupling the magnetic coupling between the HTS bulk and PM. Furthermore, the vibration transmissibility at any vibration frequency to the base-isolation object was reduced by incorporating an HTS bulk damper and eddy current damper in the model device. These results suggest that a SL system used together with an HTS bulk can realize both the stable levitation of a base-isolation object during the normal period of operation as well as the elimination of the horizontal vibration transmission when a large vibration is applied.\",\"PeriodicalId\":93144,\"journal\":{\"name\":\"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]\",\"volume\":\"55 1\",\"pages\":\"117-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2221/jcsj.55.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teion kogaku = Cryogenic engineering : [official journal of the Cryogenic Association of Japan]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/jcsj.55.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Horizontal Vibration Transmission Characteristics of a Magnetic Levitation Type Seismic Isolation Model Device with Stable Levitation System
Synopsis: This paper discusses the demonstration of a stable levitation (SL) system for a magnetic levitation type seismic isolation device using a high-temperature superconducting (HTS) bulk. The SL system utilizes a restoring force between an HTS bulk and permanent magnet (PM) to maintain the stable levitation of a base-isolation object. We first measured the restoring force between the HTS bulk and PM, and then demonstrated the performance of the SL system using a magnetic levitation type seismic isolation model device with a radial arrangement of HTS bulks and a PM rail. The SL system with the HTS bulk can reduce small vibration and displacement during the normal period of operation without experiencing a large disturbance. We also demonstrated that, when a large disturbance was applied, the transmission of horizontal vibration to the base-isolation object via the SL system was eliminated by decoupling the magnetic coupling between the HTS bulk and PM. Furthermore, the vibration transmissibility at any vibration frequency to the base-isolation object was reduced by incorporating an HTS bulk damper and eddy current damper in the model device. These results suggest that a SL system used together with an HTS bulk can realize both the stable levitation of a base-isolation object during the normal period of operation as well as the elimination of the horizontal vibration transmission when a large vibration is applied.