{"title":"可生物降解磁性淀粉复合材料固定化铜纳米粒子对卵巢癌症细胞毒性和抗氧化作用的研究","authors":"Ping Hou, Hongyi Kuang, Wei Deng, Yan Lei","doi":"10.1080/17458080.2022.2110241","DOIUrl":null,"url":null,"abstract":"Abstract In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future catalysts. This has encouraged us to design and synthesis of a novel Cu NPs fabricated potato starch functionalized magnetic nanomaterial (Fe3O4@starch/Cu nanocomposite). The prepared nanocomposite were characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, elemental mapping and ICP-OES. The biogenic synthesized Fe3O4@starch/Cu nanocomposite was explored in the anti-ovarian cancer investigations against ovarian cancer cell lines (PA-1, Caov-3, SW 626, and SK-OV-3). The material exhibited significant cytotoxicities against the ovarian cancer cell lines. However, it was considerably inactive against the normal HUVEC cell line. The antioxidant potential of Fe3O4@starch/Cu nanocomposite was also investigated by DPPH method. The Fe3O4@starch/Cu nanocomposite revealed the significant antioxidant potentials according to the IC50 value.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"17 1","pages":"496 - 508"},"PeriodicalIF":2.6000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Immobilized copper nanoparticles on biodegradable magnetic starch composite: investigation of its ovarian cancer, cytotoxicity, and antioxidant effects\",\"authors\":\"Ping Hou, Hongyi Kuang, Wei Deng, Yan Lei\",\"doi\":\"10.1080/17458080.2022.2110241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future catalysts. This has encouraged us to design and synthesis of a novel Cu NPs fabricated potato starch functionalized magnetic nanomaterial (Fe3O4@starch/Cu nanocomposite). The prepared nanocomposite were characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, elemental mapping and ICP-OES. The biogenic synthesized Fe3O4@starch/Cu nanocomposite was explored in the anti-ovarian cancer investigations against ovarian cancer cell lines (PA-1, Caov-3, SW 626, and SK-OV-3). The material exhibited significant cytotoxicities against the ovarian cancer cell lines. However, it was considerably inactive against the normal HUVEC cell line. The antioxidant potential of Fe3O4@starch/Cu nanocomposite was also investigated by DPPH method. The Fe3O4@starch/Cu nanocomposite revealed the significant antioxidant potentials according to the IC50 value.\",\"PeriodicalId\":15673,\"journal\":{\"name\":\"Journal of Experimental Nanoscience\",\"volume\":\"17 1\",\"pages\":\"496 - 508\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17458080.2022.2110241\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2022.2110241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Immobilized copper nanoparticles on biodegradable magnetic starch composite: investigation of its ovarian cancer, cytotoxicity, and antioxidant effects
Abstract In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future catalysts. This has encouraged us to design and synthesis of a novel Cu NPs fabricated potato starch functionalized magnetic nanomaterial (Fe3O4@starch/Cu nanocomposite). The prepared nanocomposite were characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, elemental mapping and ICP-OES. The biogenic synthesized Fe3O4@starch/Cu nanocomposite was explored in the anti-ovarian cancer investigations against ovarian cancer cell lines (PA-1, Caov-3, SW 626, and SK-OV-3). The material exhibited significant cytotoxicities against the ovarian cancer cell lines. However, it was considerably inactive against the normal HUVEC cell line. The antioxidant potential of Fe3O4@starch/Cu nanocomposite was also investigated by DPPH method. The Fe3O4@starch/Cu nanocomposite revealed the significant antioxidant potentials according to the IC50 value.
期刊介绍:
Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials.
The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.