通过植被剖面分类对乌兹别克斯坦塔什干省棉花生长的多时相监测

IF 0.7 Q3 GEOGRAPHY GeoScape Pub Date : 2020-06-01 DOI:10.2478/geosc-2020-0006
J. Gerts, M. Juliev, A. Pulatov
{"title":"通过植被剖面分类对乌兹别克斯坦塔什干省棉花生长的多时相监测","authors":"J. Gerts, M. Juliev, A. Pulatov","doi":"10.2478/geosc-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract As satellite data of the Earth surface seems to be of vital importance for many applications, classification of land use and land cover has been found to vary dramatically in different approaches. In this paper, modified classification algorithm of remote sensing data is presented for processing medium and high spatial resolution satellite images like Landsat and Sentinel in Tashkent province of Uzbekistan. The results of NDVI (Normalized difference vegetation index) profile analysis via Spectral Correlation Mapper classification are shown for the period 1994-2017. It is implied, that combination of optical and radar data with application of Spectral Correlation Mapper classification improve the results of classification for a specific dataset by considering such factors as overall classification accuracy and time and labor involved.","PeriodicalId":42291,"journal":{"name":"GeoScape","volume":"14 1","pages":"62 - 69"},"PeriodicalIF":0.7000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-temporal monitoring of cotton growth through the vegetation profile classification for Tashkent province, Uzbekistan\",\"authors\":\"J. Gerts, M. Juliev, A. Pulatov\",\"doi\":\"10.2478/geosc-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As satellite data of the Earth surface seems to be of vital importance for many applications, classification of land use and land cover has been found to vary dramatically in different approaches. In this paper, modified classification algorithm of remote sensing data is presented for processing medium and high spatial resolution satellite images like Landsat and Sentinel in Tashkent province of Uzbekistan. The results of NDVI (Normalized difference vegetation index) profile analysis via Spectral Correlation Mapper classification are shown for the period 1994-2017. It is implied, that combination of optical and radar data with application of Spectral Correlation Mapper classification improve the results of classification for a specific dataset by considering such factors as overall classification accuracy and time and labor involved.\",\"PeriodicalId\":42291,\"journal\":{\"name\":\"GeoScape\",\"volume\":\"14 1\",\"pages\":\"62 - 69\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeoScape\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/geosc-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeoScape","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/geosc-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 10

摘要

由于地球表面的卫星数据似乎对许多应用至关重要,人们发现不同的方法对土地利用和土地覆盖的分类差异很大。本文针对乌兹别克斯坦塔什干省Landsat和Sentinel等中、高空间分辨率卫星图像,提出了改进的遥感数据分类算法。基于光谱相关映射器分类的NDVI(归一化植被指数)剖面分析结果为1994-2017年。综上所述,综合考虑整体分类精度、耗时和人工等因素,将光学和雷达数据结合使用Spectral Correlation Mapper分类可以提高对特定数据集的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-temporal monitoring of cotton growth through the vegetation profile classification for Tashkent province, Uzbekistan
Abstract As satellite data of the Earth surface seems to be of vital importance for many applications, classification of land use and land cover has been found to vary dramatically in different approaches. In this paper, modified classification algorithm of remote sensing data is presented for processing medium and high spatial resolution satellite images like Landsat and Sentinel in Tashkent province of Uzbekistan. The results of NDVI (Normalized difference vegetation index) profile analysis via Spectral Correlation Mapper classification are shown for the period 1994-2017. It is implied, that combination of optical and radar data with application of Spectral Correlation Mapper classification improve the results of classification for a specific dataset by considering such factors as overall classification accuracy and time and labor involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GeoScape
GeoScape GEOGRAPHY-
CiteScore
2.70
自引率
7.70%
发文量
7
审稿时长
4 weeks
期刊最新文献
Visualising administrative division dynamics: transformation of borders and names in the Bohemian-Saxonian borderland Assessing current use and visions for sacral complexes in a landscape: An example from Central Europe Measuring the Gender Gap Index using socio-economic variability: A case study based on Modified Global Gender Gap Index (Sehore Municipal Council, India) Differentiation of developmental priorities of different-sized municipalities in the period of acceleration of developmental changes – an example of a mining region Provision of post construction support (PCS) services to state water authorities in Nigeria: constraints and the way forward
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1