Ali Mohammed Sahan, N. Jabr, Ahmed Bahaaulddin, Ali Al-Itb
{"title":"利用指关节特征进行人体识别","authors":"Ali Mohammed Sahan, N. Jabr, Ahmed Bahaaulddin, Ali Al-Itb","doi":"10.15849/ijasca.220328.07","DOIUrl":null,"url":null,"abstract":"Abstract Many studies refer that the figure knuckle comprises unique features. Therefore, it can be utilized in a biometric system to distinguishing between the peoples. In this paper, a combined global and local features technique has been proposed based on two descriptors, namely: Chebyshev Fourier moments (CHFMs) and Scale Invariant Feature Transform (SIFT) descriptors. The CHFMs descriptor is used to gaining the global features, while the scale invariant feature transform descriptor is utilized to extract local features. Each one of these descriptors has its advantages; therefore, combining them together leads to produce distinct features. Many experiments have been carried out using IIT-Delhi knuckle database to assess the accuracy of the proposed approach. The analysis of the results of these extensive experiments implies that the suggested technique has gained 98% accuracy rate. Furthermore, the robustness against the noise has been evaluated. The results of these experiments lead to concluding that the proposed technique is robust against the noise variation. Keywords: finger knuckle, biometric system, Chebyshev Fourier moments, scale invariant feature transform, IIT-Delhi knuckle database.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human identification using finger knuckle features\",\"authors\":\"Ali Mohammed Sahan, N. Jabr, Ahmed Bahaaulddin, Ali Al-Itb\",\"doi\":\"10.15849/ijasca.220328.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many studies refer that the figure knuckle comprises unique features. Therefore, it can be utilized in a biometric system to distinguishing between the peoples. In this paper, a combined global and local features technique has been proposed based on two descriptors, namely: Chebyshev Fourier moments (CHFMs) and Scale Invariant Feature Transform (SIFT) descriptors. The CHFMs descriptor is used to gaining the global features, while the scale invariant feature transform descriptor is utilized to extract local features. Each one of these descriptors has its advantages; therefore, combining them together leads to produce distinct features. Many experiments have been carried out using IIT-Delhi knuckle database to assess the accuracy of the proposed approach. The analysis of the results of these extensive experiments implies that the suggested technique has gained 98% accuracy rate. Furthermore, the robustness against the noise has been evaluated. The results of these experiments lead to concluding that the proposed technique is robust against the noise variation. Keywords: finger knuckle, biometric system, Chebyshev Fourier moments, scale invariant feature transform, IIT-Delhi knuckle database.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.220328.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Human identification using finger knuckle features
Abstract Many studies refer that the figure knuckle comprises unique features. Therefore, it can be utilized in a biometric system to distinguishing between the peoples. In this paper, a combined global and local features technique has been proposed based on two descriptors, namely: Chebyshev Fourier moments (CHFMs) and Scale Invariant Feature Transform (SIFT) descriptors. The CHFMs descriptor is used to gaining the global features, while the scale invariant feature transform descriptor is utilized to extract local features. Each one of these descriptors has its advantages; therefore, combining them together leads to produce distinct features. Many experiments have been carried out using IIT-Delhi knuckle database to assess the accuracy of the proposed approach. The analysis of the results of these extensive experiments implies that the suggested technique has gained 98% accuracy rate. Furthermore, the robustness against the noise has been evaluated. The results of these experiments lead to concluding that the proposed technique is robust against the noise variation. Keywords: finger knuckle, biometric system, Chebyshev Fourier moments, scale invariant feature transform, IIT-Delhi knuckle database.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.