利用指关节特征进行人体识别

Ali Mohammed Sahan, N. Jabr, Ahmed Bahaaulddin, Ali Al-Itb
{"title":"利用指关节特征进行人体识别","authors":"Ali Mohammed Sahan, N. Jabr, Ahmed Bahaaulddin, Ali Al-Itb","doi":"10.15849/ijasca.220328.07","DOIUrl":null,"url":null,"abstract":"Abstract Many studies refer that the figure knuckle comprises unique features. Therefore, it can be utilized in a biometric system to distinguishing between the peoples. In this paper, a combined global and local features technique has been proposed based on two descriptors, namely: Chebyshev Fourier moments (CHFMs) and Scale Invariant Feature Transform (SIFT) descriptors. The CHFMs descriptor is used to gaining the global features, while the scale invariant feature transform descriptor is utilized to extract local features. Each one of these descriptors has its advantages; therefore, combining them together leads to produce distinct features. Many experiments have been carried out using IIT-Delhi knuckle database to assess the accuracy of the proposed approach. The analysis of the results of these extensive experiments implies that the suggested technique has gained 98% accuracy rate. Furthermore, the robustness against the noise has been evaluated. The results of these experiments lead to concluding that the proposed technique is robust against the noise variation. Keywords: finger knuckle, biometric system, Chebyshev Fourier moments, scale invariant feature transform, IIT-Delhi knuckle database.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human identification using finger knuckle features\",\"authors\":\"Ali Mohammed Sahan, N. Jabr, Ahmed Bahaaulddin, Ali Al-Itb\",\"doi\":\"10.15849/ijasca.220328.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many studies refer that the figure knuckle comprises unique features. Therefore, it can be utilized in a biometric system to distinguishing between the peoples. In this paper, a combined global and local features technique has been proposed based on two descriptors, namely: Chebyshev Fourier moments (CHFMs) and Scale Invariant Feature Transform (SIFT) descriptors. The CHFMs descriptor is used to gaining the global features, while the scale invariant feature transform descriptor is utilized to extract local features. Each one of these descriptors has its advantages; therefore, combining them together leads to produce distinct features. Many experiments have been carried out using IIT-Delhi knuckle database to assess the accuracy of the proposed approach. The analysis of the results of these extensive experiments implies that the suggested technique has gained 98% accuracy rate. Furthermore, the robustness against the noise has been evaluated. The results of these experiments lead to concluding that the proposed technique is robust against the noise variation. Keywords: finger knuckle, biometric system, Chebyshev Fourier moments, scale invariant feature transform, IIT-Delhi knuckle database.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.220328.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要许多研究认为指关节具有独特的特征。因此,它可以用于生物识别系统来区分人群。本文提出了一种基于切比雪夫傅里叶矩(CHFMs)和尺度不变特征变换(SIFT)两种描述子的全局特征和局部特征相结合的方法。CHFMs描述子用于获取全局特征,尺度不变特征变换描述子用于提取局部特征。每种描述符都有其优点;因此,将它们结合在一起会产生不同的特征。使用IIT-Delhi关节数据库进行了许多实验,以评估所提出方法的准确性。对大量实验结果的分析表明,该方法的准确率达到了98%。此外,还评估了该方法对噪声的鲁棒性。实验结果表明,该方法对噪声变化具有较强的鲁棒性。关键词:指关节,生物识别系统,切比雪夫傅立叶矩,尺度不变特征变换,IIT-Delhi指关节数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human identification using finger knuckle features
Abstract Many studies refer that the figure knuckle comprises unique features. Therefore, it can be utilized in a biometric system to distinguishing between the peoples. In this paper, a combined global and local features technique has been proposed based on two descriptors, namely: Chebyshev Fourier moments (CHFMs) and Scale Invariant Feature Transform (SIFT) descriptors. The CHFMs descriptor is used to gaining the global features, while the scale invariant feature transform descriptor is utilized to extract local features. Each one of these descriptors has its advantages; therefore, combining them together leads to produce distinct features. Many experiments have been carried out using IIT-Delhi knuckle database to assess the accuracy of the proposed approach. The analysis of the results of these extensive experiments implies that the suggested technique has gained 98% accuracy rate. Furthermore, the robustness against the noise has been evaluated. The results of these experiments lead to concluding that the proposed technique is robust against the noise variation. Keywords: finger knuckle, biometric system, Chebyshev Fourier moments, scale invariant feature transform, IIT-Delhi knuckle database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
期刊最新文献
Insider Threat Prevention in the US Banking System Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors Multilevel Thresholding Image Segmentation Based-Logarithm Decreasing Inertia Weight Particle Swarm Optimization Improvement on I-Devices Using L-GCNN Classifier for Smart Mosque Simulation Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1