pyfmri:一个用于原始功能磁共振成像数据质量保证的软件包

Q1 Social Sciences Journal of Open Research Software Pub Date : 2020-10-07 DOI:10.5334/jors.280
B. Williams, Michael Q. Lindner
{"title":"pyfmri:一个用于原始功能磁共振成像数据质量保证的软件包","authors":"B. Williams, Michael Q. Lindner","doi":"10.5334/jors.280","DOIUrl":null,"url":null,"abstract":"pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data. pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"pyfMRIqc: A Software Package for Raw fMRI Data Quality Assurance\",\"authors\":\"B. Williams, Michael Q. Lindner\",\"doi\":\"10.5334/jors.280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data. pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 5

摘要

pyfMRIqc是检查原始功能磁共振成像(fMRI)数据质量的工具。pyfMRIqc生成一系列输出文件,可用于识别fMRI数据质量问题,如伪影、运动、信号丢失等。该工具创建了许多3D和4D NIFTI文件,可用于深度质量保证。此外,为每个NIFTI文件创建2D图像,以便快速概述。这些图像和其他信息(例如关于信噪比,扫描参数等)被组合在一个用户友好的HTML输出文件中。pyfMRIqc完全用Python编写,在GNU GPL3许可下可在GitHub (https://drmichaellindner.github.io/pyfMRIqc/)上获得。pyfMRIqc可以从命令行使用,因此可以作为处理管道的一部分包含,也可以使用批处理脚本对一系列数据集进行质量检查。单个数据集的质量保证也可以通过对话框来执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pyfMRIqc: A Software Package for Raw fMRI Data Quality Assurance
pyfMRIqc is a tool for checking the quality of raw functional magnetic resonance imaging (fMRI) data. pyfMRIqc produces a range of output files which can be used to identify fMRI data quality issues such as artefacts, motion, signal loss etc. This tool creates a number of 3D and 4D NIFTI files that can be used for in depth quality assurance. Additionally, 2D images are created for each NIFTI file for a quick overview. These images and other information (e.g. about signal-to-noise ratio, scan parameters, etc.) are combined in a user-friendly HTML output file. pyfMRIqc is written entirely in Python and is available under a GNU GPL3 license on GitHub (https://drmichaellindner.github.io/pyfMRIqc/). pyfMRIqc can be used from the command line and therefore can be included as part of a processing pipeline or used to quality-check a series of datasets using batch scripting. The quality assurance of a single dataset can also be performed via dialog boxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
期刊最新文献
Taskfarm: A Client/Server Framework for Supporting Massive Embarrassingly Parallel Workloads GTdownloader: A Python Package to Download, Visualize, and Export Georeferenced Tweets From the Twitter API A NetHack Learning Environment Language Wrapper for Autonomous Agents Automated Discovery of Container Executables Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1