逆主正交分解的矩阵精度估计

C. Tang
{"title":"逆主正交分解的矩阵精度估计","authors":"C. Tang","doi":"10.4208/cmr.2020-0001","DOIUrl":null,"url":null,"abstract":"We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix. Based on the decomposition, we propose to estimate the large precision matrix by inverting a principal orthogonal decomposition (IPOD). The IPOD approach has appealing practical interpretations in conditional graphical models given the low rank component, and it connects to Gaussian graphical models with latent variables. Specifically, we show that the low rank component in the decomposition of the large precision matrix can be viewed as the contribution from the latent variables in a Gaussian graphical model. Compared with existing approaches for latent variable graphical models, the IPOD is conveniently feasible in practice where only inverting a low-dimensional matrix is required. To identify the number of latent variables, which is an objective of its own interest, we investigate and justify an approach by examining the ratios of adjacent eigenvalues of the sample covariance matrix. Theoretical properties, numerical examples, and a real data application demonstrate the merits of the IPOD approach in its convenience, performance, and interpretability.","PeriodicalId":66427,"journal":{"name":"数学研究通讯","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision Matrix Estimation by Inverse Principal Orthogonal Decomposition\",\"authors\":\"C. Tang\",\"doi\":\"10.4208/cmr.2020-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix. Based on the decomposition, we propose to estimate the large precision matrix by inverting a principal orthogonal decomposition (IPOD). The IPOD approach has appealing practical interpretations in conditional graphical models given the low rank component, and it connects to Gaussian graphical models with latent variables. Specifically, we show that the low rank component in the decomposition of the large precision matrix can be viewed as the contribution from the latent variables in a Gaussian graphical model. Compared with existing approaches for latent variable graphical models, the IPOD is conveniently feasible in practice where only inverting a low-dimensional matrix is required. To identify the number of latent variables, which is an objective of its own interest, we investigate and justify an approach by examining the ratios of adjacent eigenvalues of the sample covariance matrix. Theoretical properties, numerical examples, and a real data application demonstrate the merits of the IPOD approach in its convenience, performance, and interpretability.\",\"PeriodicalId\":66427,\"journal\":{\"name\":\"数学研究通讯\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究通讯\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/cmr.2020-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究通讯","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cmr.2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过将高斯图模型中的大精度矩阵分解为一个低秩分量和一个稀疏精度矩阵的剩余部分,研究了大精度矩阵的结构。在此基础上,提出了利用主正交分解(IPOD)的反求来估计大精度矩阵。IPOD方法在给定低秩分量的条件图形模型中具有吸引人的实际解释,并且它连接到具有潜在变量的高斯图形模型。具体地说,我们证明了在大精度矩阵分解中的低秩分量可以看作是高斯图形模型中潜在变量的贡献。与现有的潜在变量图形模型方法相比,IPOD在只需要对低维矩阵进行逆求的情况下,在实践中是方便可行的。为了确定潜在变量的数量,这是其自身感兴趣的目标,我们通过检查样本协方差矩阵的相邻特征值的比率来研究和证明一种方法。理论性质、数值例子和实际数据应用证明了IPOD方法在便利性、性能和可解释性方面的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision Matrix Estimation by Inverse Principal Orthogonal Decomposition
We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix. Based on the decomposition, we propose to estimate the large precision matrix by inverting a principal orthogonal decomposition (IPOD). The IPOD approach has appealing practical interpretations in conditional graphical models given the low rank component, and it connects to Gaussian graphical models with latent variables. Specifically, we show that the low rank component in the decomposition of the large precision matrix can be viewed as the contribution from the latent variables in a Gaussian graphical model. Compared with existing approaches for latent variable graphical models, the IPOD is conveniently feasible in practice where only inverting a low-dimensional matrix is required. To identify the number of latent variables, which is an objective of its own interest, we investigate and justify an approach by examining the ratios of adjacent eigenvalues of the sample covariance matrix. Theoretical properties, numerical examples, and a real data application demonstrate the merits of the IPOD approach in its convenience, performance, and interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1035
期刊最新文献
Hilbert-Schmidtness of Submodules in $H^2 (\mathbb{D}^2 )$ Containing $θ(z)−\varphi (w)$ On the Kernel of the Borel’s Characteristic Map of Lie Groups Complicated Asymptotic Behavior of Solutions for the Cauchy Problem of Doubly Nonlinear Diffusion Equation Uniform Convergence of Multigrid V-Cycle on Adaptively Refined Finite Element Meshes for Elliptic Problems with Discontinuous Coefficients Decomposition of Covariate-Dependent Graphical Models with Categorical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1