Bo Zhao, Buxian Xia, Jianming Gao, Feng Luo, Qiu-Xing Chen, J. Lv, Ou-Jing Li, Jingwang Li, Xiaopeng Tong, Hui-min Liu, Shoujun Sun, Z. Pei
{"title":"甜高粱产汁性状QTL精细定位研究","authors":"Bo Zhao, Buxian Xia, Jianming Gao, Feng Luo, Qiu-Xing Chen, J. Lv, Ou-Jing Li, Jingwang Li, Xiaopeng Tong, Hui-min Liu, Shoujun Sun, Z. Pei","doi":"10.17221/48/2021-cjgpb","DOIUrl":null,"url":null,"abstract":"The stem juice yield is a key factor that influences both the biological and economic production of sweet sorghum [Sorghum dochna (Forssk.) Snowden]. To elucidate upon the genetic basis of the stem juice yield, an F5 population developed from a cross between the low juice yielding Xinliang52 (XL52) and high juice yielding W455 lines, were used in a quantitative trait locus (QTL) analysis. A main effect of the QTL controlling stem juice yield was separated with an SSR marker called Xtxp97, which explained 46.7% of the phenotypic variance. In addition, F5 and F6 populations were constructed with XL52 and W452 as the parents to further verify the QTLs, and a significant correlation was found between the juice yield trait and the Xtxp97 marker. Based on the progeny tests of 29 recombinants, QJy-sbi06 was located in a region of about 21.2 kb on chromosome 6, where a candidate gene encoding an NAC transcription factor (sobic.006G147400) was identified. Combining the different population association analysis and sequencing technology showed that XL52 inserted a 1.8 kb transposon in the NAC to directly interrupt and inactivate the juice yield gene. This study also demonstrated that the colour of the leaf midribs was controlled by a single gene and was significantly positive correlated with juiciness (r = 0.784, P < 0.01). These results could lay the foundation for map-based cloning of QJy-sbi06 and provide genes or QTLs for breeding sorghum lines with a high juice yield and quality.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on fine mapping of QTL for juice yield traits of sweet sorghum (Sorghum dochna)\",\"authors\":\"Bo Zhao, Buxian Xia, Jianming Gao, Feng Luo, Qiu-Xing Chen, J. Lv, Ou-Jing Li, Jingwang Li, Xiaopeng Tong, Hui-min Liu, Shoujun Sun, Z. Pei\",\"doi\":\"10.17221/48/2021-cjgpb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stem juice yield is a key factor that influences both the biological and economic production of sweet sorghum [Sorghum dochna (Forssk.) Snowden]. To elucidate upon the genetic basis of the stem juice yield, an F5 population developed from a cross between the low juice yielding Xinliang52 (XL52) and high juice yielding W455 lines, were used in a quantitative trait locus (QTL) analysis. A main effect of the QTL controlling stem juice yield was separated with an SSR marker called Xtxp97, which explained 46.7% of the phenotypic variance. In addition, F5 and F6 populations were constructed with XL52 and W452 as the parents to further verify the QTLs, and a significant correlation was found between the juice yield trait and the Xtxp97 marker. Based on the progeny tests of 29 recombinants, QJy-sbi06 was located in a region of about 21.2 kb on chromosome 6, where a candidate gene encoding an NAC transcription factor (sobic.006G147400) was identified. Combining the different population association analysis and sequencing technology showed that XL52 inserted a 1.8 kb transposon in the NAC to directly interrupt and inactivate the juice yield gene. This study also demonstrated that the colour of the leaf midribs was controlled by a single gene and was significantly positive correlated with juiciness (r = 0.784, P < 0.01). These results could lay the foundation for map-based cloning of QJy-sbi06 and provide genes or QTLs for breeding sorghum lines with a high juice yield and quality.\",\"PeriodicalId\":50598,\"journal\":{\"name\":\"Czech Journal of Genetics and Plant Breeding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czech Journal of Genetics and Plant Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/48/2021-cjgpb\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Genetics and Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/48/2021-cjgpb","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
摘要
茎汁产量是影响甜高粱生物生产和经济生产的关键因素。斯诺登)。为阐明茎汁产量的遗传基础,以低汁系新良52 (XL52)与高产系W455杂交而成的F5群体为材料,进行了数量性状位点(QTL)分析。用SSR标记Xtxp97分离出控制茎汁产量的QTL主效应,解释了46.7%的表型变异。此外,以XL52和W452为亲本构建F5和F6群体进一步验证qtl,发现产汁性状与Xtxp97标记之间存在显著相关。通过对29个重组体的子代检测,QJy-sbi06位于6号染色体约21.2 kb的区域,在该区域发现了一个编码NAC转录因子的候选基因(sobic.006G147400)。结合不同群体关联分析和测序技术发现,XL52在NAC中插入了一个1.8 kb的转座子,直接中断并灭活了产汁基因。叶中肋颜色受单基因控制,与多汁性呈极显著正相关(r = 0.784, P < 0.01)。这些结果可为QJy-sbi06的图谱克隆奠定基础,并为选育高产优质高粱品系提供基因或qtl。
Study on fine mapping of QTL for juice yield traits of sweet sorghum (Sorghum dochna)
The stem juice yield is a key factor that influences both the biological and economic production of sweet sorghum [Sorghum dochna (Forssk.) Snowden]. To elucidate upon the genetic basis of the stem juice yield, an F5 population developed from a cross between the low juice yielding Xinliang52 (XL52) and high juice yielding W455 lines, were used in a quantitative trait locus (QTL) analysis. A main effect of the QTL controlling stem juice yield was separated with an SSR marker called Xtxp97, which explained 46.7% of the phenotypic variance. In addition, F5 and F6 populations were constructed with XL52 and W452 as the parents to further verify the QTLs, and a significant correlation was found between the juice yield trait and the Xtxp97 marker. Based on the progeny tests of 29 recombinants, QJy-sbi06 was located in a region of about 21.2 kb on chromosome 6, where a candidate gene encoding an NAC transcription factor (sobic.006G147400) was identified. Combining the different population association analysis and sequencing technology showed that XL52 inserted a 1.8 kb transposon in the NAC to directly interrupt and inactivate the juice yield gene. This study also demonstrated that the colour of the leaf midribs was controlled by a single gene and was significantly positive correlated with juiciness (r = 0.784, P < 0.01). These results could lay the foundation for map-based cloning of QJy-sbi06 and provide genes or QTLs for breeding sorghum lines with a high juice yield and quality.
期刊介绍:
Original scientific papers, critical reviews articles and short communications from the field of theoretical and applied plant genetics, plant biotechnology and plant breeding. Papers are published in English.