{"title":"考虑反射和折射的光学扩散计算的内部边界条件的比较","authors":"Toranosuke Amano, Tomohiro Endo, Akio Yamamoto","doi":"10.1364/optcon.492445","DOIUrl":null,"url":null,"abstract":"A method to treat the internal boundary condition in an optical diffusion calculation is proposed and is compared with the conventional methods. One of the existing internal boundary conditions is Haskel's method, which uses the effective reflection coefficient for partial currents. However, Haskel's method ignores incoming partial currents from the adjacent mesh in its derivation. As a result, the accuracy at the internal boundary is lower. This paper proposes a method to improve the accuracy by iteratively updating the effective reflection coefficient for partial current. The proposed method was applied to the benchmark calculations on a one-dimensional slab geometry and its accuracy was confirmed by comparing it with the reference solution obtained by the Monte Carlo code MCML, along with the previously proposed Haskel's method and Aronson's method. As a result, it was confirmed that the proposed method is more accurate than Haskel's method at the internal boundary and gives the same result as Aronson's method. The convergence of the effective reflection coefficient using iterative calculations in the proposed method was good.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of internal boundary conditions for optical diffusion calculations considering reflection and refraction\",\"authors\":\"Toranosuke Amano, Tomohiro Endo, Akio Yamamoto\",\"doi\":\"10.1364/optcon.492445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to treat the internal boundary condition in an optical diffusion calculation is proposed and is compared with the conventional methods. One of the existing internal boundary conditions is Haskel's method, which uses the effective reflection coefficient for partial currents. However, Haskel's method ignores incoming partial currents from the adjacent mesh in its derivation. As a result, the accuracy at the internal boundary is lower. This paper proposes a method to improve the accuracy by iteratively updating the effective reflection coefficient for partial current. The proposed method was applied to the benchmark calculations on a one-dimensional slab geometry and its accuracy was confirmed by comparing it with the reference solution obtained by the Monte Carlo code MCML, along with the previously proposed Haskel's method and Aronson's method. As a result, it was confirmed that the proposed method is more accurate than Haskel's method at the internal boundary and gives the same result as Aronson's method. The convergence of the effective reflection coefficient using iterative calculations in the proposed method was good.\",\"PeriodicalId\":74366,\"journal\":{\"name\":\"Optics continuum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcon.492445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcon.492445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Comparison of internal boundary conditions for optical diffusion calculations considering reflection and refraction
A method to treat the internal boundary condition in an optical diffusion calculation is proposed and is compared with the conventional methods. One of the existing internal boundary conditions is Haskel's method, which uses the effective reflection coefficient for partial currents. However, Haskel's method ignores incoming partial currents from the adjacent mesh in its derivation. As a result, the accuracy at the internal boundary is lower. This paper proposes a method to improve the accuracy by iteratively updating the effective reflection coefficient for partial current. The proposed method was applied to the benchmark calculations on a one-dimensional slab geometry and its accuracy was confirmed by comparing it with the reference solution obtained by the Monte Carlo code MCML, along with the previously proposed Haskel's method and Aronson's method. As a result, it was confirmed that the proposed method is more accurate than Haskel's method at the internal boundary and gives the same result as Aronson's method. The convergence of the effective reflection coefficient using iterative calculations in the proposed method was good.