{"title":"稀疏数据条件下的逻辑回归","authors":"D. Walker, Thomas J. Smith","doi":"10.22237/JMASM/1604190660","DOIUrl":null,"url":null,"abstract":"The impact of sparse data conditions was examined among one or more predictor variables in logistic regression and assessed the effectiveness of the Firth (1993) procedure in reducing potential parameter estimation bias. Results indicated sparseness in binary predictors introduces bias that is substantial with small sample sizes, and the Firth procedure can effectively correct this bias.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":" ","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Logistic Regression Under Sparse Data Conditions\",\"authors\":\"D. Walker, Thomas J. Smith\",\"doi\":\"10.22237/JMASM/1604190660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of sparse data conditions was examined among one or more predictor variables in logistic regression and assessed the effectiveness of the Firth (1993) procedure in reducing potential parameter estimation bias. Results indicated sparseness in binary predictors introduces bias that is substantial with small sample sizes, and the Firth procedure can effectively correct this bias.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\" \",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1604190660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1604190660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The impact of sparse data conditions was examined among one or more predictor variables in logistic regression and assessed the effectiveness of the Firth (1993) procedure in reducing potential parameter estimation bias. Results indicated sparseness in binary predictors introduces bias that is substantial with small sample sizes, and the Firth procedure can effectively correct this bias.
期刊介绍:
The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.