{"title":"复杂调查抽样中聚类数据的多项Logistic混合模型","authors":"B. Sutradhar","doi":"10.1007/s13171-020-00215-2","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":46728,"journal":{"name":"Sankhya-Series A-Mathematical Statistics and Probability","volume":"84 1","pages":"743-789"},"PeriodicalIF":0.6000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13171-020-00215-2","citationCount":"3","resultStr":"{\"title\":\"Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup\",\"authors\":\"B. Sutradhar\",\"doi\":\"10.1007/s13171-020-00215-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":46728,\"journal\":{\"name\":\"Sankhya-Series A-Mathematical Statistics and Probability\",\"volume\":\"84 1\",\"pages\":\"743-789\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13171-020-00215-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sankhya-Series A-Mathematical Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13171-020-00215-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya-Series A-Mathematical Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13171-020-00215-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
期刊介绍:
Sankhya, Series A, publishes original, high quality research articles in various areas of modern statistics, such as probability, theoretical statistics, mathematical statistics and machine learning. The areas are interpreted in a broad sense. Articles are judged on the basis of their novelty and technical correctness.
Sankhya, Series B, primarily covers applied and interdisciplinary statistics including data sciences. Applied articles should preferably include analysis of original data of broad interest, novel applications of methodology and development of methods and techniques of immediate practical use. Authoritative reviews and comprehensive discussion articles in areas of vigorous current research are also welcome.