基于深度残差网络的迁移学习有效脑肿瘤分类

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-07-12 DOI:10.32985/ijeces.14.6.2
D. Saida, Klsdt Keerthi Vardhan, P. Premchand
{"title":"基于深度残差网络的迁移学习有效脑肿瘤分类","authors":"D. Saida, Klsdt Keerthi Vardhan, P. Premchand","doi":"10.32985/ijeces.14.6.2","DOIUrl":null,"url":null,"abstract":"Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Brain Tumor Classification Using Deep Residual Network-Based Transfer Learning\",\"authors\":\"D. Saida, Klsdt Keerthi Vardhan, P. Premchand\",\"doi\":\"10.32985/ijeces.14.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.6.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤分类是医学图像处理中的一项重要任务,有助于医生准确诊断和制定治疗方案。提出了一种基于深度残差网络的迁移学习到全卷积卷积神经网络(CNN)的方法,用于对BRATS 2020数据集的磁共振图像(MRI)进行脑肿瘤分类。该数据集包括各种术前MRI扫描,以在外观,形状和组织学上完整地分割不同的脑肿瘤,即胶质瘤。提出了一种基于全卷积CNN的深度残差网络(ResNet-50)来对BRATS数据集的MRI进行肿瘤分类。50层残差网络利用卷积块和身份块对分类任务中的多类肿瘤图像进行深度卷积。本文提出的模型解决了基于cnn的ME-Net算法精度和复杂性有限以及YOLOv2初始化中的分类问题。训练后的CNN学习边界和区域任务,并以最小的计算成本从MRI扫描中提取成功的上下文信息。采用U-Net结构一步完成肿瘤的分割和分类,有助于保留图像的空间特征。通过对数据集信息的整合,实现多模态融合,完成分类和回归任务。在BRATS 2020数据集上,该模型对增强肿瘤(ET)、全肿瘤(WT)和肿瘤核心(TC)的骰子得分分别为0.88、0.97和0.90,准确率为99.94%,灵敏度为98.92%,特异性为98.63%,精度为99.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Brain Tumor Classification Using Deep Residual Network-Based Transfer Learning
Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1