{"title":"基于深度残差网络的迁移学习有效脑肿瘤分类","authors":"D. Saida, Klsdt Keerthi Vardhan, P. Premchand","doi":"10.32985/ijeces.14.6.2","DOIUrl":null,"url":null,"abstract":"Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Brain Tumor Classification Using Deep Residual Network-Based Transfer Learning\",\"authors\":\"D. Saida, Klsdt Keerthi Vardhan, P. Premchand\",\"doi\":\"10.32985/ijeces.14.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.6.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effective Brain Tumor Classification Using Deep Residual Network-Based Transfer Learning
Brain tumor classification is an essential task in medical image processing that provides assistance to doctors for accurate diagnoses and treatment plans. A Deep Residual Network based Transfer Learning to a fully convoluted Convolutional Neural Network (CNN) is proposed to perform brain tumor classification of Magnetic Resonance Images (MRI) from the BRATS 2020 dataset. The dataset consists of a variety of pre-operative MRI scans to segment integrally varied brain tumors in appearance, shape, and histology, namely gliomas. A Deep Residual Network (ResNet-50) to a fully convoluted CNN is proposed to perform tumor classification from MRI of the BRATS dataset. The 50-layered residual network deeply convolutes the multi-category of tumor images in classification tasks using convolution block and identity block. Limitations such as Limited accuracy and complexity of algorithms in CNN-based ME-Net, and classification issues in YOLOv2 inceptions are resolved by the proposed model in this work. The trained CNN learns boundary and region tasks and extracts successful contextual information from MRI scans with minimal computation cost. The tumor segmentation and classification are performed in one step using a U-Net architecture, which helps retain spatial features of the image. The multimodality fusion is implemented to perform classification and regression tasks by integrating dataset information. The dice scores of the proposed model for Enhanced Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) are 0.88, 0.97, and 0.90 on the BRATS 2020 dataset, and also resulted in 99.94% accuracy, 98.92% sensitivity, 98.63% specificity, and 99.94% precision.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.