{"title":"SCENe Things:基于物联网的社区能源计划监测","authors":"R. Shipman, M. Gillott","doi":"10.5334/FCE.64","DOIUrl":null,"url":null,"abstract":"This paper describes a technology platform for monitoring homes within a community energy scheme. A range of sensors was deployed to measure in-home environmental conditions, occupancy, electrical power, electrical energy, thermal energy, heating behaviour and boiler performance to better understand and predict energy consumption in individual homes and across the community. The community assets include solar photovoltaic panels that are deployed in an urban solar farm and on rooftops to generate energy that is used to charge a central battery. This community scale storage supports participation in grid services to help balance the national grid and in future phases to power a community heat network, electric vehicle charging and self-consumption within individual properties. The monitoring data helps develop insights to optimise this multifaceted system and to provide feedback to residents to visualise and control their energy consumption and encourage reductions in demand. It was found that a diverse range of Internet of Things technologies was required to generate this data and make it available for subsequent access and analysis. This diversity was consolidated in the cloud to provide a common data structure for consumption by other services via industry standard interfaces. The cloud infrastructure utilised scalable and easily deployable services that are readily available from Internet of Things platforms from the major technology companies. The paper concludes by highlighting promising areas of focus for community-level monitoring in related projects.","PeriodicalId":36755,"journal":{"name":"Future Cities and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"SCENe Things: IoT-based Monitoring of a Community Energy Scheme\",\"authors\":\"R. Shipman, M. Gillott\",\"doi\":\"10.5334/FCE.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a technology platform for monitoring homes within a community energy scheme. A range of sensors was deployed to measure in-home environmental conditions, occupancy, electrical power, electrical energy, thermal energy, heating behaviour and boiler performance to better understand and predict energy consumption in individual homes and across the community. The community assets include solar photovoltaic panels that are deployed in an urban solar farm and on rooftops to generate energy that is used to charge a central battery. This community scale storage supports participation in grid services to help balance the national grid and in future phases to power a community heat network, electric vehicle charging and self-consumption within individual properties. The monitoring data helps develop insights to optimise this multifaceted system and to provide feedback to residents to visualise and control their energy consumption and encourage reductions in demand. It was found that a diverse range of Internet of Things technologies was required to generate this data and make it available for subsequent access and analysis. This diversity was consolidated in the cloud to provide a common data structure for consumption by other services via industry standard interfaces. The cloud infrastructure utilised scalable and easily deployable services that are readily available from Internet of Things platforms from the major technology companies. The paper concludes by highlighting promising areas of focus for community-level monitoring in related projects.\",\"PeriodicalId\":36755,\"journal\":{\"name\":\"Future Cities and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Cities and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/FCE.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Cities and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/FCE.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
SCENe Things: IoT-based Monitoring of a Community Energy Scheme
This paper describes a technology platform for monitoring homes within a community energy scheme. A range of sensors was deployed to measure in-home environmental conditions, occupancy, electrical power, electrical energy, thermal energy, heating behaviour and boiler performance to better understand and predict energy consumption in individual homes and across the community. The community assets include solar photovoltaic panels that are deployed in an urban solar farm and on rooftops to generate energy that is used to charge a central battery. This community scale storage supports participation in grid services to help balance the national grid and in future phases to power a community heat network, electric vehicle charging and self-consumption within individual properties. The monitoring data helps develop insights to optimise this multifaceted system and to provide feedback to residents to visualise and control their energy consumption and encourage reductions in demand. It was found that a diverse range of Internet of Things technologies was required to generate this data and make it available for subsequent access and analysis. This diversity was consolidated in the cloud to provide a common data structure for consumption by other services via industry standard interfaces. The cloud infrastructure utilised scalable and easily deployable services that are readily available from Internet of Things platforms from the major technology companies. The paper concludes by highlighting promising areas of focus for community-level monitoring in related projects.