移动健康研究和应用的移动和可穿戴传感框架

Devender Kumar, S. Jeuris, J. Bardram, N. Dragoni
{"title":"移动健康研究和应用的移动和可穿戴传感框架","authors":"Devender Kumar, S. Jeuris, J. Bardram, N. Dragoni","doi":"10.1145/3422158","DOIUrl":null,"url":null,"abstract":"With the widespread use of smartphones and wearable health sensors, a plethora of mobile health (mHealth) applications to track well-being, run human behavioral studies, and clinical trials have emerged in recent years. However, the design, development, and deployment of mHealth applications is challenging in many ways. To address these challenges, several generic mobile sensing frameworks have been researched in the past decade. Such frameworks assist developers and researchers in reducing the complexity, time, and cost required to build and deploy health-sensing applications. The main goal of this article is to provide the reader with an overview of the state-of-the-art of health-focused generic mobile and wearable sensing frameworks. This review gives a detailed analysis of functional and non-functional features of existing frameworks, the health studies they were used in, and the stakeholders they support. Additionally, we also analyze the historical evolution, uptake, and maintenance after the initial release. Based on this analysis, we suggest new features and opportunities for future generic mHealth sensing frameworks.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3422158","citationCount":"19","resultStr":"{\"title\":\"Mobile and Wearable Sensing Frameworks for mHealth Studies and Applications\",\"authors\":\"Devender Kumar, S. Jeuris, J. Bardram, N. Dragoni\",\"doi\":\"10.1145/3422158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread use of smartphones and wearable health sensors, a plethora of mobile health (mHealth) applications to track well-being, run human behavioral studies, and clinical trials have emerged in recent years. However, the design, development, and deployment of mHealth applications is challenging in many ways. To address these challenges, several generic mobile sensing frameworks have been researched in the past decade. Such frameworks assist developers and researchers in reducing the complexity, time, and cost required to build and deploy health-sensing applications. The main goal of this article is to provide the reader with an overview of the state-of-the-art of health-focused generic mobile and wearable sensing frameworks. This review gives a detailed analysis of functional and non-functional features of existing frameworks, the health studies they were used in, and the stakeholders they support. Additionally, we also analyze the historical evolution, uptake, and maintenance after the initial release. Based on this analysis, we suggest new features and opportunities for future generic mHealth sensing frameworks.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"2 1\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3422158\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3422158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3422158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

随着智能手机和可穿戴式健康传感器的广泛使用,近年来出现了大量跟踪健康状况、进行人类行为研究和临床试验的移动健康(mHealth)应用程序。然而,移动健康应用程序的设计、开发和部署在许多方面都具有挑战性。为了应对这些挑战,在过去十年中研究了几种通用的移动传感框架。这些框架帮助开发人员和研究人员减少构建和部署健康感知应用程序所需的复杂性、时间和成本。本文的主要目标是向读者提供以健康为重点的通用移动和可穿戴传感框架的最新技术概述。本综述详细分析了现有框架的功能和非功能特征、它们所用于的健康研究以及它们所支持的利益相关者。此外,我们还分析了初始版本发布后的历史演变、吸收和维护。基于这一分析,我们提出了未来通用移动健康传感框架的新功能和机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile and Wearable Sensing Frameworks for mHealth Studies and Applications
With the widespread use of smartphones and wearable health sensors, a plethora of mobile health (mHealth) applications to track well-being, run human behavioral studies, and clinical trials have emerged in recent years. However, the design, development, and deployment of mHealth applications is challenging in many ways. To address these challenges, several generic mobile sensing frameworks have been researched in the past decade. Such frameworks assist developers and researchers in reducing the complexity, time, and cost required to build and deploy health-sensing applications. The main goal of this article is to provide the reader with an overview of the state-of-the-art of health-focused generic mobile and wearable sensing frameworks. This review gives a detailed analysis of functional and non-functional features of existing frameworks, the health studies they were used in, and the stakeholders they support. Additionally, we also analyze the historical evolution, uptake, and maintenance after the initial release. Based on this analysis, we suggest new features and opportunities for future generic mHealth sensing frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1