本体聚(丙烯)聚合中等级转换的优化

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Macromolecular Reaction Engineering Pub Date : 2023-02-10 DOI:10.1002/mren.202300001
Jonildo S. Silva, Príamo A. Melo, José Carlos Pinto
{"title":"本体聚(丙烯)聚合中等级转换的优化","authors":"Jonildo S. Silva,&nbsp;Príamo A. Melo,&nbsp;José Carlos Pinto","doi":"10.1002/mren.202300001","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, a dynamic optimization problem regarding grade transitions in bulk poly(propylene) polymerization processes is formulated and solved for the first time. Initially, a detailed dynamic process model is presented and implemented, comprising mass and energy balances, some of the polymer properties (such as the melting flow index and the xylene solubles) and regulatory control loops. Additionally, the effects of cocatalyst and electron donor on the propagation rate constant are taken into account. Then, the dynamic optimization problem is formulated and an evolutionary algorithm is used to solve the resulting nonlinear programming problem. It is shown that there is significant coupling among the manipulated variables and the controlled performance and polymer property variables, which adds complexity to the grade transition problem and demands the simultaneous manipulation of multiple variables during transitions. Despite the inherent open-loop unstable nature of the analyzed process, it is shown that smooth grade transition trajectories can be accomplished through proper adjustment of the objective function weights. Finally, it is shown that the obtained optimum trajectories can significantly diminish the transition time, which can be of paramount importance for the plant economics.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Grade Transitions in Bulk Poly(propylene) Polymerizations\",\"authors\":\"Jonildo S. Silva,&nbsp;Príamo A. Melo,&nbsp;José Carlos Pinto\",\"doi\":\"10.1002/mren.202300001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present paper, a dynamic optimization problem regarding grade transitions in bulk poly(propylene) polymerization processes is formulated and solved for the first time. Initially, a detailed dynamic process model is presented and implemented, comprising mass and energy balances, some of the polymer properties (such as the melting flow index and the xylene solubles) and regulatory control loops. Additionally, the effects of cocatalyst and electron donor on the propagation rate constant are taken into account. Then, the dynamic optimization problem is formulated and an evolutionary algorithm is used to solve the resulting nonlinear programming problem. It is shown that there is significant coupling among the manipulated variables and the controlled performance and polymer property variables, which adds complexity to the grade transition problem and demands the simultaneous manipulation of multiple variables during transitions. Despite the inherent open-loop unstable nature of the analyzed process, it is shown that smooth grade transition trajectories can be accomplished through proper adjustment of the objective function weights. Finally, it is shown that the obtained optimum trajectories can significantly diminish the transition time, which can be of paramount importance for the plant economics.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文首次提出并求解了本体聚丙烯聚合过程中有关品位转移的动态优化问题。首先,提出并实现了一个详细的动态过程模型,包括质量和能量平衡,一些聚合物特性(如熔融流动指数和二甲苯可溶物)和调节控制回路。此外,还考虑了助催化剂和电子给体对繁殖速率常数的影响。然后,提出了动态优化问题,并采用进化算法求解由此产生的非线性规划问题。结果表明,被控变量与被控性能和聚合物性质变量之间存在显著的耦合关系,这增加了等级转换问题的复杂性,要求在等级转换过程中同时对多个变量进行操作。尽管所分析的过程具有固有的开环不稳定性,但通过适当调整目标函数权值,可以实现平滑的坡度过渡轨迹。最后,研究表明,所获得的最优轨迹可以显著缩短过渡时间,这对植物经济至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Grade Transitions in Bulk Poly(propylene) Polymerizations

In the present paper, a dynamic optimization problem regarding grade transitions in bulk poly(propylene) polymerization processes is formulated and solved for the first time. Initially, a detailed dynamic process model is presented and implemented, comprising mass and energy balances, some of the polymer properties (such as the melting flow index and the xylene solubles) and regulatory control loops. Additionally, the effects of cocatalyst and electron donor on the propagation rate constant are taken into account. Then, the dynamic optimization problem is formulated and an evolutionary algorithm is used to solve the resulting nonlinear programming problem. It is shown that there is significant coupling among the manipulated variables and the controlled performance and polymer property variables, which adds complexity to the grade transition problem and demands the simultaneous manipulation of multiple variables during transitions. Despite the inherent open-loop unstable nature of the analyzed process, it is shown that smooth grade transition trajectories can be accomplished through proper adjustment of the objective function weights. Finally, it is shown that the obtained optimum trajectories can significantly diminish the transition time, which can be of paramount importance for the plant economics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
期刊最新文献
Monomer Transport by Collisions in (Mini) Emulsion Polymerization, a Personal Perspective Front Cover: Macromol. React. Eng. 4/2024 Masthead: Macromol. React. Eng. 4/2024 Tailoring Polyaniline for Improved Acetaldehyde Detection Determining the Kinetic and Thermodynamic Parameters of Anionic Polymerization of Styrene Using Linear Free‐Energy Relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1