过渡金属掺杂ZnO纳米团簇检测环氧乙烷的DFT研究

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Main Group Metal Chemistry Pub Date : 2019-07-16 DOI:10.1515/mgmc-2019-0012
Tooba Afshari, M. Mohsennia
{"title":"过渡金属掺杂ZnO纳米团簇检测环氧乙烷的DFT研究","authors":"Tooba Afshari, M. Mohsennia","doi":"10.1515/mgmc-2019-0012","DOIUrl":null,"url":null,"abstract":"Abstract Density functional theory (DFT) studies at B3LYP/6-31G (d) (Becke, 3-parameter, Lee-Yang-Parr) level were performed to evaluate adsorption interactions between ethylene oxide (EO) molecule, and pristine and transition metals (TM) (i.e., Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped ZnO nanocluster (TM-doped Zn12O12). The adsorption energy (Ead), band gap energy (Eg), Mulliken charge transfer (QT) and molecular electrostatic potential (MEP) were calculated to examine the sensitivity of the Zn12O12 and its TM-doped forms toward EO detection. It was found that in contrast to the pristine Zn12O12, the electronic properties of TM-doped Zn12O12 were sharply sensitive to the presence of EO gas molecules. The results revealed that among the studied TM-doped Zn12O12, Cr- and V-doped Zn12O12 have great potential applicability as EO sensor, due to their highest Eg change (ΔEg) values, after the EO adsorption. Moreover, the density of state (DOS) calculations confirmed that strong electronic interaction between Cr- and V-doped Zn12O12 and EO molecules can makes them interesting empirical candidate for detection and adsorptive removal of EO gas molecules.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"42 1","pages":"113 - 120"},"PeriodicalIF":1.8000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2019-0012","citationCount":"12","resultStr":"{\"title\":\"Transition metals doped ZnO nanocluster for ethylene oxide detection: A DFT study\",\"authors\":\"Tooba Afshari, M. Mohsennia\",\"doi\":\"10.1515/mgmc-2019-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Density functional theory (DFT) studies at B3LYP/6-31G (d) (Becke, 3-parameter, Lee-Yang-Parr) level were performed to evaluate adsorption interactions between ethylene oxide (EO) molecule, and pristine and transition metals (TM) (i.e., Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped ZnO nanocluster (TM-doped Zn12O12). The adsorption energy (Ead), band gap energy (Eg), Mulliken charge transfer (QT) and molecular electrostatic potential (MEP) were calculated to examine the sensitivity of the Zn12O12 and its TM-doped forms toward EO detection. It was found that in contrast to the pristine Zn12O12, the electronic properties of TM-doped Zn12O12 were sharply sensitive to the presence of EO gas molecules. The results revealed that among the studied TM-doped Zn12O12, Cr- and V-doped Zn12O12 have great potential applicability as EO sensor, due to their highest Eg change (ΔEg) values, after the EO adsorption. Moreover, the density of state (DOS) calculations confirmed that strong electronic interaction between Cr- and V-doped Zn12O12 and EO molecules can makes them interesting empirical candidate for detection and adsorptive removal of EO gas molecules.\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"42 1\",\"pages\":\"113 - 120\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mgmc-2019-0012\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2019-0012\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2019-0012","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 12

摘要

摘要在B3LYP/6-31G(d)(Becke,3-参数,Lee Yang-Parr)水平上进行了密度泛函理论(DFT)研究,以评估环氧乙烷(EO)分子与原始和过渡金属(TM)(即Sc、Ti、V、Cr、Mn、Fe、Co、Ni和Cu)掺杂的ZnO纳米团簇(TM掺杂的Zn12O12)之间的吸附相互作用。计算了吸附能(Ead)、带隙能(Eg)、穆利肯电荷转移(QT)和分子静电势(MEP),以检验Zn12O12及其TM掺杂形式对EO检测的敏感性。研究发现,与原始的Zn12O12相比,TM掺杂的Zn12O2的电子性质对EO气体分子的存在非常敏感。结果表明,在所研究的TM掺杂的Zn12O12中,Cr和V掺杂的Zn12 O12在EO吸附后具有最高的Eg变化(ΔEg)值,因此具有很大的EO传感器应用潜力。此外,态密度(DOS)计算证实,Cr和V掺杂的Zn12O12与EO分子之间的强电子相互作用可以使它们成为检测和吸附去除EO气体分子的有趣的经验候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transition metals doped ZnO nanocluster for ethylene oxide detection: A DFT study
Abstract Density functional theory (DFT) studies at B3LYP/6-31G (d) (Becke, 3-parameter, Lee-Yang-Parr) level were performed to evaluate adsorption interactions between ethylene oxide (EO) molecule, and pristine and transition metals (TM) (i.e., Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped ZnO nanocluster (TM-doped Zn12O12). The adsorption energy (Ead), band gap energy (Eg), Mulliken charge transfer (QT) and molecular electrostatic potential (MEP) were calculated to examine the sensitivity of the Zn12O12 and its TM-doped forms toward EO detection. It was found that in contrast to the pristine Zn12O12, the electronic properties of TM-doped Zn12O12 were sharply sensitive to the presence of EO gas molecules. The results revealed that among the studied TM-doped Zn12O12, Cr- and V-doped Zn12O12 have great potential applicability as EO sensor, due to their highest Eg change (ΔEg) values, after the EO adsorption. Moreover, the density of state (DOS) calculations confirmed that strong electronic interaction between Cr- and V-doped Zn12O12 and EO molecules can makes them interesting empirical candidate for detection and adsorptive removal of EO gas molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
期刊最新文献
Two new zinc(ii) coordination complexes constructed by phenanthroline derivate: Synthesis and structure Retraction to “Aluminium(iii), Fe(ii) Complexes and Dyeing Properties of Apigenin(5,7,4′-trihydroxy flavone)” Synthesis and crystal structure of an ionic phenyltin(iv) complex of N-salicylidene-valine Lithium fluoroarylsilylamides and their structural features On computation of neighbourhood degree sum-based topological indices for zinc-based metal–organic frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1