利用局部或分布式声学传感器测量地面和井下声速,优化流量测量

IF 1.4 4区 工程技术 Q2 ENGINEERING, PETROLEUM Spe Production & Operations Pub Date : 2021-03-01 DOI:10.2118/201313-PA
O. Unalmis
{"title":"利用局部或分布式声学传感器测量地面和井下声速,优化流量测量","authors":"O. Unalmis","doi":"10.2118/201313-PA","DOIUrl":null,"url":null,"abstract":"\n The litmus test for downhole multiphase flowmeters is to compare the measured phase flow rates with the rates from a test separator or other surface measurement systems. In most cases, the composition of the measurand is required for flowmeters. This is typically obtained from bottomhole fluid samples. Extracting and analyzing fluid samples is an expensive process mostly done at the initial stages of field development. In some cases, the composition may be old or unavailable, leading to subpar flowmeter performance compared to surface systems. In this work, it is shown that when the data from a surface system such as a test separator are used in conjunction with the mixture sound speed measured downhole, it is possible to optimize a downhole multiphase flowmeter system without obtaining new fluid samples. The optimization process is independent of the downhole measurement device because the required flow-velocity and sound-speed measurements may be obtained from separate devices. For example, the fluid bulk velocity and mixture sound speed can be measured by a local measurement device and a distributed acoustic sensing (DAS) system, respectively. The main challenge in a flow-velocity/sound-speed measurement system is determining individual phase sound speeds so that the mixture phase fraction can be correctly determined using Wood’s mixture sound speed model. The phase fraction from the separator tests can be used as the target value to optimize the performance of the system. The system has two operation modes. In optimization mode, the individual phase sound speeds are calculated backward using the predicted phase fractions from surface measurements. Pressure and temperature variations at measurement locations, as well as pipe compliance effects, are accounted for during the process. After the adjustment of individual phase sound speeds, steady-state operation mode takes over, and a forward calculation is implemented using the same model. The final phase fraction agrees well with the actual value and can be improved further with an iterative approach. This novel method is demonstrated in a North Sea case history. A downhole optical flowmeter in a North Sea field measured mixture velocity and sound speed. Well-test results indicated that water cut from the flowmeter was underreported and phase flow rates did not match test-separator rates. Instead of halting production and going through a fluid sample analysis cycle, the test-separator water cut was used as the target value to optimize oil phase sound speed using Wood’s model in the optimization mode. The difference between the initial and optimized oil sound speeds was extrapolated to other pressure and temperature conditions, and steady-state operation mode showed that separator tests and flowmeter measurements closely matched. Subsequent flowmeter and test-separator data confirmed excellent agreement. Using surface measurements and downhole mixture sound speed to optimize phase flow rates is a novel method that has not been previously demonstrated. This method is independent of device type, is broadly applicable, and improves the understanding of multiphase flow measurement.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flow Measurement Optimization Using Surface Measurements and Downhole Sound Speed Measurements from Local or Distributed Acoustic Sensors\",\"authors\":\"O. Unalmis\",\"doi\":\"10.2118/201313-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The litmus test for downhole multiphase flowmeters is to compare the measured phase flow rates with the rates from a test separator or other surface measurement systems. In most cases, the composition of the measurand is required for flowmeters. This is typically obtained from bottomhole fluid samples. Extracting and analyzing fluid samples is an expensive process mostly done at the initial stages of field development. In some cases, the composition may be old or unavailable, leading to subpar flowmeter performance compared to surface systems. In this work, it is shown that when the data from a surface system such as a test separator are used in conjunction with the mixture sound speed measured downhole, it is possible to optimize a downhole multiphase flowmeter system without obtaining new fluid samples. The optimization process is independent of the downhole measurement device because the required flow-velocity and sound-speed measurements may be obtained from separate devices. For example, the fluid bulk velocity and mixture sound speed can be measured by a local measurement device and a distributed acoustic sensing (DAS) system, respectively. The main challenge in a flow-velocity/sound-speed measurement system is determining individual phase sound speeds so that the mixture phase fraction can be correctly determined using Wood’s mixture sound speed model. The phase fraction from the separator tests can be used as the target value to optimize the performance of the system. The system has two operation modes. In optimization mode, the individual phase sound speeds are calculated backward using the predicted phase fractions from surface measurements. Pressure and temperature variations at measurement locations, as well as pipe compliance effects, are accounted for during the process. After the adjustment of individual phase sound speeds, steady-state operation mode takes over, and a forward calculation is implemented using the same model. The final phase fraction agrees well with the actual value and can be improved further with an iterative approach. This novel method is demonstrated in a North Sea case history. A downhole optical flowmeter in a North Sea field measured mixture velocity and sound speed. Well-test results indicated that water cut from the flowmeter was underreported and phase flow rates did not match test-separator rates. Instead of halting production and going through a fluid sample analysis cycle, the test-separator water cut was used as the target value to optimize oil phase sound speed using Wood’s model in the optimization mode. The difference between the initial and optimized oil sound speeds was extrapolated to other pressure and temperature conditions, and steady-state operation mode showed that separator tests and flowmeter measurements closely matched. Subsequent flowmeter and test-separator data confirmed excellent agreement. Using surface measurements and downhole mixture sound speed to optimize phase flow rates is a novel method that has not been previously demonstrated. This method is independent of device type, is broadly applicable, and improves the understanding of multiphase flow measurement.\",\"PeriodicalId\":22071,\"journal\":{\"name\":\"Spe Production & Operations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spe Production & Operations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/201313-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/201313-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 4

摘要

井下多相流量计的石蕊测试是将测得的相流速与测试分离器或其他表面测量系统的流速进行比较。在大多数情况下,流量计需要被测量物的组成。这通常是从井底流体样本中获得的。提取和分析流体样本是一个昂贵的过程,主要在油田开发的初始阶段进行。在某些情况下,成分可能陈旧或不可用,导致流量计性能低于地面系统。在这项工作中,表明当来自诸如测试分离器的表面系统的数据与井下测量的混合物声速结合使用时,可以在不获得新的流体样本的情况下优化井下多相流量计系统。优化过程独立于井下测量设备,因为所需的流速和声速测量可以从单独的设备获得。例如,流体体积速度和混合物声速可以分别通过局部测量设备和分布式声学传感(DAS)系统来测量。流速/声速测量系统中的主要挑战是确定各个相的声速,以便可以使用Wood的混合物声速模型正确地确定混合物相分数。分离器测试的相分数可以用作优化系统性能的目标值。该系统有两种操作模式。在优化模式中,使用来自表面测量的预测相位分数来反向计算各个相位声速。测量位置的压力和温度变化,以及管道顺应性影响,都在过程中得到了考虑。在对各个相位声速进行调整后,稳态运行模式接管,并使用相同的模型进行正向计算。最终的相位分数与实际值非常一致,并且可以通过迭代方法进一步改进。这种新颖的方法在北海的一个案例历史中得到了证明。北海油田的井下光学流量计测量了混合物的速度和声速。试井结果表明,流量计的含水率报告不足,相流速与测试分离器的流速不匹配。在优化模式中,使用Wood模型将测试分离器含水率用作目标值,以优化油相声速,而不是停止生产并进行流体样本分析循环。将初始和优化的油声速之间的差异外推到其他压力和温度条件下,稳态运行模式表明分离器测试和流量计测量结果非常匹配。随后的流量计和测试分离器数据证实了良好的一致性。使用表面测量和井下混合物声速来优化相流速是一种以前没有证明过的新方法。该方法与设备类型无关,适用范围广,提高了对多相流测量的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow Measurement Optimization Using Surface Measurements and Downhole Sound Speed Measurements from Local or Distributed Acoustic Sensors
The litmus test for downhole multiphase flowmeters is to compare the measured phase flow rates with the rates from a test separator or other surface measurement systems. In most cases, the composition of the measurand is required for flowmeters. This is typically obtained from bottomhole fluid samples. Extracting and analyzing fluid samples is an expensive process mostly done at the initial stages of field development. In some cases, the composition may be old or unavailable, leading to subpar flowmeter performance compared to surface systems. In this work, it is shown that when the data from a surface system such as a test separator are used in conjunction with the mixture sound speed measured downhole, it is possible to optimize a downhole multiphase flowmeter system without obtaining new fluid samples. The optimization process is independent of the downhole measurement device because the required flow-velocity and sound-speed measurements may be obtained from separate devices. For example, the fluid bulk velocity and mixture sound speed can be measured by a local measurement device and a distributed acoustic sensing (DAS) system, respectively. The main challenge in a flow-velocity/sound-speed measurement system is determining individual phase sound speeds so that the mixture phase fraction can be correctly determined using Wood’s mixture sound speed model. The phase fraction from the separator tests can be used as the target value to optimize the performance of the system. The system has two operation modes. In optimization mode, the individual phase sound speeds are calculated backward using the predicted phase fractions from surface measurements. Pressure and temperature variations at measurement locations, as well as pipe compliance effects, are accounted for during the process. After the adjustment of individual phase sound speeds, steady-state operation mode takes over, and a forward calculation is implemented using the same model. The final phase fraction agrees well with the actual value and can be improved further with an iterative approach. This novel method is demonstrated in a North Sea case history. A downhole optical flowmeter in a North Sea field measured mixture velocity and sound speed. Well-test results indicated that water cut from the flowmeter was underreported and phase flow rates did not match test-separator rates. Instead of halting production and going through a fluid sample analysis cycle, the test-separator water cut was used as the target value to optimize oil phase sound speed using Wood’s model in the optimization mode. The difference between the initial and optimized oil sound speeds was extrapolated to other pressure and temperature conditions, and steady-state operation mode showed that separator tests and flowmeter measurements closely matched. Subsequent flowmeter and test-separator data confirmed excellent agreement. Using surface measurements and downhole mixture sound speed to optimize phase flow rates is a novel method that has not been previously demonstrated. This method is independent of device type, is broadly applicable, and improves the understanding of multiphase flow measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spe Production & Operations
Spe Production & Operations 工程技术-工程:石油
CiteScore
3.70
自引率
8.30%
发文量
54
审稿时长
3 months
期刊介绍: SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.
期刊最新文献
Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1