{"title":"增强现实(AR)化学实验室中的动手互动提高了成绩差的学生的学习效果:一项试点研究","authors":"Yufang Cheng, M. Lee, Chung-Sung Yang, P. Wu","doi":"10.1108/itse-04-2022-0045","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study was to develop the augmented reality (AR) educational program combined with the instructional guidance for supportive learning, which enhanced the thinking process cooperative discussion and problem-solving skills in chemistry subject.\n\n\nDesign/methodology/approach\nThe method used the quasi-experimental research design. Of the 45 students who attended this experiment, only 25 with low achievement qualified in operating the AR learning system of saponification and transesterification environment (ARLS-STE) system.\n\n\nFindings\nThese results confirmed that the AR educational program could have increased substantial benefits in improvements of students’ knowledge and the ability of the thinking process for the participants with the lowest score. In semi-structured interviews, most of participants enjoyed manipulating the ARLS-STE system, which was realistic, motived and interesting for learning science subjects.\n\n\nOriginality/value\nThe low-achieving students have often been known with a low learning capability, and they lack in developing constructional knowledge, despite being keen for learning. Regarding educational concerns for this population, providing orientated learning and supportive materials could increase their learning effects. Virtual worlds are an efficient learning tool in educational setting. The AR can offer visual concepts and physical interaction for students with low achievement in learning. Thus, this study investigates the acceptability of an educational program designed in the ARLS-STE, which involves the learning effects of academic knowledge and the capability of thinking process for students with low achievement. The ARLS-STE system was developed for this proposal, based upon the marker-based AR technologies combined with hands-on manipulation.\n","PeriodicalId":44954,"journal":{"name":"Interactive Technology and Smart Education","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hands-on interaction in the augmented reality (AR) chemistry laboratories enhances the learning effects of low-achieving students: a pilot study\",\"authors\":\"Yufang Cheng, M. Lee, Chung-Sung Yang, P. Wu\",\"doi\":\"10.1108/itse-04-2022-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study was to develop the augmented reality (AR) educational program combined with the instructional guidance for supportive learning, which enhanced the thinking process cooperative discussion and problem-solving skills in chemistry subject.\\n\\n\\nDesign/methodology/approach\\nThe method used the quasi-experimental research design. Of the 45 students who attended this experiment, only 25 with low achievement qualified in operating the AR learning system of saponification and transesterification environment (ARLS-STE) system.\\n\\n\\nFindings\\nThese results confirmed that the AR educational program could have increased substantial benefits in improvements of students’ knowledge and the ability of the thinking process for the participants with the lowest score. In semi-structured interviews, most of participants enjoyed manipulating the ARLS-STE system, which was realistic, motived and interesting for learning science subjects.\\n\\n\\nOriginality/value\\nThe low-achieving students have often been known with a low learning capability, and they lack in developing constructional knowledge, despite being keen for learning. Regarding educational concerns for this population, providing orientated learning and supportive materials could increase their learning effects. Virtual worlds are an efficient learning tool in educational setting. The AR can offer visual concepts and physical interaction for students with low achievement in learning. Thus, this study investigates the acceptability of an educational program designed in the ARLS-STE, which involves the learning effects of academic knowledge and the capability of thinking process for students with low achievement. The ARLS-STE system was developed for this proposal, based upon the marker-based AR technologies combined with hands-on manipulation.\\n\",\"PeriodicalId\":44954,\"journal\":{\"name\":\"Interactive Technology and Smart Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interactive Technology and Smart Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/itse-04-2022-0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interactive Technology and Smart Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/itse-04-2022-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Hands-on interaction in the augmented reality (AR) chemistry laboratories enhances the learning effects of low-achieving students: a pilot study
Purpose
The purpose of this study was to develop the augmented reality (AR) educational program combined with the instructional guidance for supportive learning, which enhanced the thinking process cooperative discussion and problem-solving skills in chemistry subject.
Design/methodology/approach
The method used the quasi-experimental research design. Of the 45 students who attended this experiment, only 25 with low achievement qualified in operating the AR learning system of saponification and transesterification environment (ARLS-STE) system.
Findings
These results confirmed that the AR educational program could have increased substantial benefits in improvements of students’ knowledge and the ability of the thinking process for the participants with the lowest score. In semi-structured interviews, most of participants enjoyed manipulating the ARLS-STE system, which was realistic, motived and interesting for learning science subjects.
Originality/value
The low-achieving students have often been known with a low learning capability, and they lack in developing constructional knowledge, despite being keen for learning. Regarding educational concerns for this population, providing orientated learning and supportive materials could increase their learning effects. Virtual worlds are an efficient learning tool in educational setting. The AR can offer visual concepts and physical interaction for students with low achievement in learning. Thus, this study investigates the acceptability of an educational program designed in the ARLS-STE, which involves the learning effects of academic knowledge and the capability of thinking process for students with low achievement. The ARLS-STE system was developed for this proposal, based upon the marker-based AR technologies combined with hands-on manipulation.
期刊介绍:
Interactive Technology and Smart Education (ITSE) is a multi-disciplinary, peer-reviewed journal, which provides a distinct forum to specially promote innovation and participative research approaches. The following terms are defined, as used in the context of this journal: -Interactive Technology refers to all forms of digital technology, as described above, emphasizing innovation and human-/user-centred approaches. -Smart Education "SMART" is used as an acronym that refers to interactive technology that offers a more flexible and tailored approach to meet diverse individual requirements by being “Sensitive, Manageable, Adaptable, Responsive and Timely” to educators’ pedagogical strategies and learners’ educational and social needs’. -Articles are invited that explore innovative use of educational technologies that advance interactive technology in general and its applications in education in particular. The journal aims to bridge gaps in the field by promoting design research, action research, and continuous evaluation as an integral part of the development cycle of usable solutions/systems.