{"title":"使用深度学习技术自动检索公共需求的健康病例报告","authors":"Yi-Hung Liu, Sheng-Fong Chen, Dan-Wei (Marian) Wen","doi":"10.1108/ajim-01-2023-0002","DOIUrl":null,"url":null,"abstract":"PurposeOnline medical repositories provide a platform for users to share information and dynamically access abundant electronic health data. It is important to determine whether case report information can assist the general public in appropriately managing their diseases. Therefore, this paper aims to introduce a novel deep learning-based method that allows non-professionals to make inquiries using ordinary vocabulary, retrieving the most relevant case reports for accurate and effective health information.Design/methodology/approachThe dataset of case reports was collected from both the patient-generated research network and the digital medical journal repository. To enhance the accuracy of obtaining relevant case reports, the authors propose a retrieval approach that combines BERT and BiLSTM methods. The authors identified representative health-related case reports and analyzed the retrieval performance, as well as user judgments.FindingsThis study aims to provide the necessary functionalities to deliver relevant health case reports based on input from ordinary terms. The proposed framework includes features for health management, user feedback acquisition and ranking by weights to obtain the most pertinent case reports.Originality/valueThis study contributes to health information systems by analyzing patients' experiences and treatments with the case report retrieval model. The results of this study can provide immense benefit to the general public who intend to find treatment decisions and experiences from relevant case reports.","PeriodicalId":53152,"journal":{"name":"Aslib Journal of Information Management","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic retrieval of health case reports for public needs using deep learning techniques\",\"authors\":\"Yi-Hung Liu, Sheng-Fong Chen, Dan-Wei (Marian) Wen\",\"doi\":\"10.1108/ajim-01-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeOnline medical repositories provide a platform for users to share information and dynamically access abundant electronic health data. It is important to determine whether case report information can assist the general public in appropriately managing their diseases. Therefore, this paper aims to introduce a novel deep learning-based method that allows non-professionals to make inquiries using ordinary vocabulary, retrieving the most relevant case reports for accurate and effective health information.Design/methodology/approachThe dataset of case reports was collected from both the patient-generated research network and the digital medical journal repository. To enhance the accuracy of obtaining relevant case reports, the authors propose a retrieval approach that combines BERT and BiLSTM methods. The authors identified representative health-related case reports and analyzed the retrieval performance, as well as user judgments.FindingsThis study aims to provide the necessary functionalities to deliver relevant health case reports based on input from ordinary terms. The proposed framework includes features for health management, user feedback acquisition and ranking by weights to obtain the most pertinent case reports.Originality/valueThis study contributes to health information systems by analyzing patients' experiences and treatments with the case report retrieval model. The results of this study can provide immense benefit to the general public who intend to find treatment decisions and experiences from relevant case reports.\",\"PeriodicalId\":53152,\"journal\":{\"name\":\"Aslib Journal of Information Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aslib Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ajim-01-2023-0002\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aslib Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ajim-01-2023-0002","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Automatic retrieval of health case reports for public needs using deep learning techniques
PurposeOnline medical repositories provide a platform for users to share information and dynamically access abundant electronic health data. It is important to determine whether case report information can assist the general public in appropriately managing their diseases. Therefore, this paper aims to introduce a novel deep learning-based method that allows non-professionals to make inquiries using ordinary vocabulary, retrieving the most relevant case reports for accurate and effective health information.Design/methodology/approachThe dataset of case reports was collected from both the patient-generated research network and the digital medical journal repository. To enhance the accuracy of obtaining relevant case reports, the authors propose a retrieval approach that combines BERT and BiLSTM methods. The authors identified representative health-related case reports and analyzed the retrieval performance, as well as user judgments.FindingsThis study aims to provide the necessary functionalities to deliver relevant health case reports based on input from ordinary terms. The proposed framework includes features for health management, user feedback acquisition and ranking by weights to obtain the most pertinent case reports.Originality/valueThis study contributes to health information systems by analyzing patients' experiences and treatments with the case report retrieval model. The results of this study can provide immense benefit to the general public who intend to find treatment decisions and experiences from relevant case reports.
期刊介绍:
Aslib Journal of Information Management covers a broad range of issues in the field, including economic, behavioural, social, ethical, technological, international, business-related, political and management-orientated factors. Contributors are encouraged to spell out the practical implications of their work. Aslib Journal of Information Management Areas of interest include topics such as social media, data protection, search engines, information retrieval, digital libraries, information behaviour, intellectual property and copyright, information industry, digital repositories and information policy and governance.