{"title":"关于微分方程存在唯一性的一般变分框架","authors":"P. Pedregal","doi":"10.5802/ambp.405","DOIUrl":null,"url":null,"abstract":"Starting from the classic contraction mapping principle, we establish a general, flexible, variational setting that turns out to be applicable to many situations of existence in Differential Equations. This unifying feature is quite appealing and motivated our analysis. We show its potentiality with some selected examples including initial-value, Cauchy problems for ODEs; non-linear, monotone PDEs; linear and non-linear hyperbolic problems; and steady Navier–Stokes systems. Though the paper has the structure of a survey, we would like to explore in the future how this perspective could help in advancing for some new situations in PDEs.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a general variational framework for existence and uniqueness in Differential Equations\",\"authors\":\"P. Pedregal\",\"doi\":\"10.5802/ambp.405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from the classic contraction mapping principle, we establish a general, flexible, variational setting that turns out to be applicable to many situations of existence in Differential Equations. This unifying feature is quite appealing and motivated our analysis. We show its potentiality with some selected examples including initial-value, Cauchy problems for ODEs; non-linear, monotone PDEs; linear and non-linear hyperbolic problems; and steady Navier–Stokes systems. Though the paper has the structure of a survey, we would like to explore in the future how this perspective could help in advancing for some new situations in PDEs.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On a general variational framework for existence and uniqueness in Differential Equations
Starting from the classic contraction mapping principle, we establish a general, flexible, variational setting that turns out to be applicable to many situations of existence in Differential Equations. This unifying feature is quite appealing and motivated our analysis. We show its potentiality with some selected examples including initial-value, Cauchy problems for ODEs; non-linear, monotone PDEs; linear and non-linear hyperbolic problems; and steady Navier–Stokes systems. Though the paper has the structure of a survey, we would like to explore in the future how this perspective could help in advancing for some new situations in PDEs.