地塞米松:治疗应用,靶点和翻译

IF 0.8 Q4 MATERIALS SCIENCE, BIOMATERIALS Nano Life Pub Date : 2022-06-30 DOI:10.1142/s1793984422300035
Rishabh Hirday, Grace H. Tam, Audrey A. O'Neill, Mollie S Davis, R. Schloss
{"title":"地塞米松:治疗应用,靶点和翻译","authors":"Rishabh Hirday, Grace H. Tam, Audrey A. O'Neill, Mollie S Davis, R. Schloss","doi":"10.1142/s1793984422300035","DOIUrl":null,"url":null,"abstract":"Dexamethasone is a synthetic corticosteroid that has historically been used to treat inflammation, such as from osteoarthritis, spinal cord injury and, more recently, COVID-19. The mechanism of action of dexamethasone is generally known to include attenuation of pro-inflammatory responses as well as upregulation of anti-inflammatory elements. A major issue with the use of dexamethasone is its delivery, as it is normally administered in large quantities via methods like bolus injection to attempt to maintain sufficient concentrations days or weeks after administration. In this review, we examine the mechanism of action of dexamethasone and its effects on three major cell types in the context of specific diseases: macrophages in the context of COVID, chondrocytes in the context of osteoarthritis, and astrocytes in the context of neuro-inflammatory disease. From this, we identify the key proinflammatory cytokines interleukin-1 (IL-1) and Tumor Necrosis Factor alpha (TNF-a) as universal effectors of inflammation that should be targeted alongside dexamethasone administration. Additionally, we review current extended release dosing mechanisms for dexamethasone to act over periods of weeks and months. We suggest that dual treatment of dexamethasone with IL-1 and/or TNF-a monoclonal antibodies will be an effective immediate treatment for inflammation, while the addition of fully developed dexamethasone extended release mechanisms will allow for effective long-term control of inflammatory disease. [ FROM AUTHOR] Copyright of Nano Life is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexamethasone: Therapeutic Applications, Targets and Translation\",\"authors\":\"Rishabh Hirday, Grace H. Tam, Audrey A. O'Neill, Mollie S Davis, R. Schloss\",\"doi\":\"10.1142/s1793984422300035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dexamethasone is a synthetic corticosteroid that has historically been used to treat inflammation, such as from osteoarthritis, spinal cord injury and, more recently, COVID-19. The mechanism of action of dexamethasone is generally known to include attenuation of pro-inflammatory responses as well as upregulation of anti-inflammatory elements. A major issue with the use of dexamethasone is its delivery, as it is normally administered in large quantities via methods like bolus injection to attempt to maintain sufficient concentrations days or weeks after administration. In this review, we examine the mechanism of action of dexamethasone and its effects on three major cell types in the context of specific diseases: macrophages in the context of COVID, chondrocytes in the context of osteoarthritis, and astrocytes in the context of neuro-inflammatory disease. From this, we identify the key proinflammatory cytokines interleukin-1 (IL-1) and Tumor Necrosis Factor alpha (TNF-a) as universal effectors of inflammation that should be targeted alongside dexamethasone administration. Additionally, we review current extended release dosing mechanisms for dexamethasone to act over periods of weeks and months. We suggest that dual treatment of dexamethasone with IL-1 and/or TNF-a monoclonal antibodies will be an effective immediate treatment for inflammation, while the addition of fully developed dexamethasone extended release mechanisms will allow for effective long-term control of inflammatory disease. [ FROM AUTHOR] Copyright of Nano Life is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)\",\"PeriodicalId\":44929,\"journal\":{\"name\":\"Nano Life\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793984422300035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793984422300035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

地塞米松是一种合成皮质类固醇,历史上一直用于治疗炎症,如骨关节炎、脊髓损伤以及最近的COVID-19。众所周知,地塞米松的作用机制包括抑制促炎反应和上调抗炎因子。使用地塞米松的一个主要问题是它的给药,因为它通常是通过注射等方法大量给药,试图在给药后几天或几周内保持足够的浓度。在这篇综述中,我们研究了地塞米松的作用机制及其在特定疾病背景下对三种主要细胞类型的影响:巨噬细胞在COVID背景下,软骨细胞在骨关节炎背景下,星形胶质细胞在神经炎症疾病背景下。由此,我们确定了关键的促炎细胞因子白介素-1 (IL-1)和肿瘤坏死因子α (TNF-a)作为炎症的普遍效应物,应该与地塞米松一起靶向给药。此外,我们回顾了目前地塞米松在数周和数月时间内的缓释给药机制。我们建议,地塞米松与IL-1和/或TNF-a单克隆抗体的双重治疗将是炎症的有效即时治疗,而完全开发的地塞米松延长释放机制的添加将允许有效的长期控制炎症性疾病。纳米生命的版权是世界科学出版公司的财产,未经版权所有者的明确书面许可,其内容不得复制或通过电子邮件发送到多个网站或发布到listserv。但是,用户可以打印、下载或通过电子邮件发送文章供个人使用。这可以删节。对副本的准确性不作任何保证。用户应参阅原始出版版本的材料的完整。(版权适用于所有人。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dexamethasone: Therapeutic Applications, Targets and Translation
Dexamethasone is a synthetic corticosteroid that has historically been used to treat inflammation, such as from osteoarthritis, spinal cord injury and, more recently, COVID-19. The mechanism of action of dexamethasone is generally known to include attenuation of pro-inflammatory responses as well as upregulation of anti-inflammatory elements. A major issue with the use of dexamethasone is its delivery, as it is normally administered in large quantities via methods like bolus injection to attempt to maintain sufficient concentrations days or weeks after administration. In this review, we examine the mechanism of action of dexamethasone and its effects on three major cell types in the context of specific diseases: macrophages in the context of COVID, chondrocytes in the context of osteoarthritis, and astrocytes in the context of neuro-inflammatory disease. From this, we identify the key proinflammatory cytokines interleukin-1 (IL-1) and Tumor Necrosis Factor alpha (TNF-a) as universal effectors of inflammation that should be targeted alongside dexamethasone administration. Additionally, we review current extended release dosing mechanisms for dexamethasone to act over periods of weeks and months. We suggest that dual treatment of dexamethasone with IL-1 and/or TNF-a monoclonal antibodies will be an effective immediate treatment for inflammation, while the addition of fully developed dexamethasone extended release mechanisms will allow for effective long-term control of inflammatory disease. [ FROM AUTHOR] Copyright of Nano Life is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Life
Nano Life MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
0.70
自引率
12.50%
发文量
14
期刊最新文献
Scope of Biological Property Activated Plant Extracted Nanoparticles for Human Immune Response - A Review Electrochemical Sensor Based on CuO Nanoparticles Modified Graphite Electrode for the Detection of Malachite Green Exploiting the electrical nature of biofilms for long-term monitoring of quiescent aquatic environments via open-circuit microbial potentiometric sensors: Evidence of long-distance electrical signaling Author Index (Volume 13) Synthesis, characterization and in-vitro biological studies of curcumin decorated biogenic selenium nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1