{"title":"基于中国GF-4多光谱资料的海面海流监测","authors":"Hequan Sun, Zeyu Li, Ruoli Shao","doi":"10.1080/01490419.2021.1925788","DOIUrl":null,"url":null,"abstract":"Abstract The seawater tracing index that characterizes the sea surface feature can be calculated using the optimal band combination of China GF-4 high-resolution multispectral data, and the distribution of sea surface currents can be retrieved from the sequential band combination data. In this paper, the methods of monitoring sea surface currents are presented in detail by processing multispectral remote sensing images generated by China GF-4 Earth Observation satellite. The sea surface currents obtained from GF-4 imagery data are compared with the sea surface currents derived from FES2014 global ocean tide model, providing a validation of the proposed methods.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1925788","citationCount":"0","resultStr":"{\"title\":\"Monitoring Sea Surface Currents Based on China GF-4 Multispectral Data\",\"authors\":\"Hequan Sun, Zeyu Li, Ruoli Shao\",\"doi\":\"10.1080/01490419.2021.1925788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The seawater tracing index that characterizes the sea surface feature can be calculated using the optimal band combination of China GF-4 high-resolution multispectral data, and the distribution of sea surface currents can be retrieved from the sequential band combination data. In this paper, the methods of monitoring sea surface currents are presented in detail by processing multispectral remote sensing images generated by China GF-4 Earth Observation satellite. The sea surface currents obtained from GF-4 imagery data are compared with the sea surface currents derived from FES2014 global ocean tide model, providing a validation of the proposed methods.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01490419.2021.1925788\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2021.1925788\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2021.1925788","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Monitoring Sea Surface Currents Based on China GF-4 Multispectral Data
Abstract The seawater tracing index that characterizes the sea surface feature can be calculated using the optimal band combination of China GF-4 high-resolution multispectral data, and the distribution of sea surface currents can be retrieved from the sequential band combination data. In this paper, the methods of monitoring sea surface currents are presented in detail by processing multispectral remote sensing images generated by China GF-4 Earth Observation satellite. The sea surface currents obtained from GF-4 imagery data are compared with the sea surface currents derived from FES2014 global ocean tide model, providing a validation of the proposed methods.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.