离散和连续混合预测回归模型的规格检验

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-08-08 DOI:10.1080/07350015.2022.2110879
Xuehu Zhu, Qiming Zhang, Lixing Zhu, Jun Zhang, Luoyao Yu
{"title":"离散和连续混合预测回归模型的规格检验","authors":"Xuehu Zhu, Qiming Zhang, Lixing Zhu, Jun Zhang, Luoyao Yu","doi":"10.1080/07350015.2022.2110879","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes a nonparametric projection-based adaptive-to-model specification test for regressions with discrete and continuous predictors. The test statistic is asymptotically normal under the null hypothesis and omnibus against alternative hypotheses. The test behaves like a locally smoothing test as if the number of continuous predictors was one and can detect the local alternative hypotheses distinct from the null hypothesis at the rate that can be achieved by existing locally smoothing tests for regressions with only one continuous predictor. Because of the model adaptation property, the test can fully use the model structure under the null hypothesis so that the dimensionality problem can be significantly alleviated. A discretization-expectation ordinary least squares estimation approach for partial central subspace in sufficient dimension reduction is developed as a by-product in the test construction. We suggest a residual-based wild bootstrap method to give an approximation by fully using the null model and thus closer to the limiting null distribution than existing bootstrap approximations. We conduct simulation studies to compare it with existing tests and two real data examples for illustration.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Specification Testing of Regression Models with Mixed Discrete and Continuous Predictors\",\"authors\":\"Xuehu Zhu, Qiming Zhang, Lixing Zhu, Jun Zhang, Luoyao Yu\",\"doi\":\"10.1080/07350015.2022.2110879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article proposes a nonparametric projection-based adaptive-to-model specification test for regressions with discrete and continuous predictors. The test statistic is asymptotically normal under the null hypothesis and omnibus against alternative hypotheses. The test behaves like a locally smoothing test as if the number of continuous predictors was one and can detect the local alternative hypotheses distinct from the null hypothesis at the rate that can be achieved by existing locally smoothing tests for regressions with only one continuous predictor. Because of the model adaptation property, the test can fully use the model structure under the null hypothesis so that the dimensionality problem can be significantly alleviated. A discretization-expectation ordinary least squares estimation approach for partial central subspace in sufficient dimension reduction is developed as a by-product in the test construction. We suggest a residual-based wild bootstrap method to give an approximation by fully using the null model and thus closer to the limiting null distribution than existing bootstrap approximations. We conduct simulation studies to compare it with existing tests and two real data examples for illustration.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2110879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2110879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一种基于非参数投影的离散和连续预测回归自适应模型规范检验方法。检验统计量在零假设下是渐近正态的,对备择假设是综合的。该检验的行为类似于局部平滑检验,就好像连续预测因子的数量是一个一样,并且可以检测到与零假设不同的局部替代假设,其速度与只有一个连续预测因子的回归的现有局部平滑检验所能达到的速度相同。由于模型的自适应特性,该检验可以充分利用零假设下的模型结构,从而显著缓解维数问题。作为试验构造的副产品,提出了一种充分降维的部分中心子空间的离散化期望普通最小二乘估计方法。我们提出了一种基于残差的野生自举方法,通过充分利用零模型来给出近似,从而比现有的自举近似更接近极限零分布。我们进行了模拟研究,将其与现有测试和两个真实数据示例进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specification Testing of Regression Models with Mixed Discrete and Continuous Predictors
Abstract This article proposes a nonparametric projection-based adaptive-to-model specification test for regressions with discrete and continuous predictors. The test statistic is asymptotically normal under the null hypothesis and omnibus against alternative hypotheses. The test behaves like a locally smoothing test as if the number of continuous predictors was one and can detect the local alternative hypotheses distinct from the null hypothesis at the rate that can be achieved by existing locally smoothing tests for regressions with only one continuous predictor. Because of the model adaptation property, the test can fully use the model structure under the null hypothesis so that the dimensionality problem can be significantly alleviated. A discretization-expectation ordinary least squares estimation approach for partial central subspace in sufficient dimension reduction is developed as a by-product in the test construction. We suggest a residual-based wild bootstrap method to give an approximation by fully using the null model and thus closer to the limiting null distribution than existing bootstrap approximations. We conduct simulation studies to compare it with existing tests and two real data examples for illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1