J. Vėžys, Y. Aliakseyeu, Y. Bumai, A. Vaskou, V. Niss, V. Minchenya
{"title":"热弛豫差分光谱法研究LED光源的热界面","authors":"J. Vėžys, Y. Aliakseyeu, Y. Bumai, A. Vaskou, V. Niss, V. Minchenya","doi":"10.21595/jme.2021.21826","DOIUrl":null,"url":null,"abstract":"Thermal relaxation differential spectrometry (TRDS) was used to study the thermal parameters of samples with various design features for heat removal a powerful LED lamp (150 W) used in industrial and street lighting, low power LED lamps (4 W) with filament emitters, as well as SMD emitter. It is shown that the method of thermal relaxation differential spectrometry is effectively applicable to the study of the structure of thermal parameters of both high-power and low-power LED devices. The method is informative and allows to study in the distribution of thermal resistance and heat flux over the volume and layers of the LED device detail. The use of the TRDS method allows the optimization of the thermal design of LED devices to reduce the overheating temperature of their active regions, and, therefore, to reduce the degradation of LED devices.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of the thermal interface of LED lighting sources by thermal relaxation differential spectrometry (TRDS)\",\"authors\":\"J. Vėžys, Y. Aliakseyeu, Y. Bumai, A. Vaskou, V. Niss, V. Minchenya\",\"doi\":\"10.21595/jme.2021.21826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal relaxation differential spectrometry (TRDS) was used to study the thermal parameters of samples with various design features for heat removal a powerful LED lamp (150 W) used in industrial and street lighting, low power LED lamps (4 W) with filament emitters, as well as SMD emitter. It is shown that the method of thermal relaxation differential spectrometry is effectively applicable to the study of the structure of thermal parameters of both high-power and low-power LED devices. The method is informative and allows to study in the distribution of thermal resistance and heat flux over the volume and layers of the LED device detail. The use of the TRDS method allows the optimization of the thermal design of LED devices to reduce the overheating temperature of their active regions, and, therefore, to reduce the degradation of LED devices.\",\"PeriodicalId\":42196,\"journal\":{\"name\":\"Journal of Measurements in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Measurements in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/jme.2021.21826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurements in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jme.2021.21826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research of the thermal interface of LED lighting sources by thermal relaxation differential spectrometry (TRDS)
Thermal relaxation differential spectrometry (TRDS) was used to study the thermal parameters of samples with various design features for heat removal a powerful LED lamp (150 W) used in industrial and street lighting, low power LED lamps (4 W) with filament emitters, as well as SMD emitter. It is shown that the method of thermal relaxation differential spectrometry is effectively applicable to the study of the structure of thermal parameters of both high-power and low-power LED devices. The method is informative and allows to study in the distribution of thermal resistance and heat flux over the volume and layers of the LED device detail. The use of the TRDS method allows the optimization of the thermal design of LED devices to reduce the overheating temperature of their active regions, and, therefore, to reduce the degradation of LED devices.