{"title":"群体异质性中的结构断裂","authors":"Simon C. Smith","doi":"10.1080/07350015.2022.2063132","DOIUrl":null,"url":null,"abstract":"Abstract Generating accurate forecasts in the presence of structural breaks requires careful management of bias-variance tradeoffs. Forecasting panel data under breaks offers the possibility to reduce parameter estimation error without inducing any bias if there exists a regime-specific pattern of grouped heterogeneity. To this end, we develop a new Bayesian methodology to estimate and formally test panel regression models in the presence of multiple breaks and unobserved regime-specific grouped heterogeneity. In an empirical application to forecasting inflation rates across 20 U.S. industries, our method generates significantly more accurate forecasts relative to a range of popular methods.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structural Breaks in Grouped Heterogeneity\",\"authors\":\"Simon C. Smith\",\"doi\":\"10.1080/07350015.2022.2063132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Generating accurate forecasts in the presence of structural breaks requires careful management of bias-variance tradeoffs. Forecasting panel data under breaks offers the possibility to reduce parameter estimation error without inducing any bias if there exists a regime-specific pattern of grouped heterogeneity. To this end, we develop a new Bayesian methodology to estimate and formally test panel regression models in the presence of multiple breaks and unobserved regime-specific grouped heterogeneity. In an empirical application to forecasting inflation rates across 20 U.S. industries, our method generates significantly more accurate forecasts relative to a range of popular methods.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2063132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2063132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Abstract Generating accurate forecasts in the presence of structural breaks requires careful management of bias-variance tradeoffs. Forecasting panel data under breaks offers the possibility to reduce parameter estimation error without inducing any bias if there exists a regime-specific pattern of grouped heterogeneity. To this end, we develop a new Bayesian methodology to estimate and formally test panel regression models in the presence of multiple breaks and unobserved regime-specific grouped heterogeneity. In an empirical application to forecasting inflation rates across 20 U.S. industries, our method generates significantly more accurate forecasts relative to a range of popular methods.