{"title":"有限指数CMC曲面几何","authors":"W. Meeks, Joaquín Pérez","doi":"10.1515/ans-2022-0063","DOIUrl":null,"url":null,"abstract":"Abstract Given r 0 > 0 {r}_{0}\\gt 0 , I ∈ N ∪ { 0 } I\\in {\\mathbb{N}}\\cup \\left\\{0\\right\\} , and K 0 , H 0 ≥ 0 {K}_{0},{H}_{0}\\ge 0 , let X X be a complete Riemannian 3-manifold with injectivity radius Inj ( X ) ≥ r 0 \\hspace{0.1em}\\text{Inj}\\hspace{0.1em}\\left(X)\\ge {r}_{0} and with the supremum of absolute sectional curvature at most K 0 {K}_{0} , and let M ↬ X M\\hspace{0.33em}\\looparrowright \\hspace{0.33em}X be a complete immersed surface of constant mean curvature H ∈ [ 0 , H 0 ] H\\in \\left[0,{H}_{0}] and with index at most I I . We will obtain geometric estimates for such an M ↬ X M\\hspace{0.33em}\\looparrowright \\hspace{0.33em}X as a consequence of the hierarchy structure theorem. The hierarchy structure theorem (Theorem 2.2) will be applied to understand global properties of M ↬ X M\\hspace{0.33em}\\looparrowright \\hspace{0.33em}X , especially results related to the area and diameter of M M . By item E of Theorem 2.2, the area of such a noncompact M ↬ X M\\hspace{0.33em}\\looparrowright \\hspace{0.33em}X is infinite. We will improve this area result by proving the following when M M is connected; here, g ( M ) g\\left(M) denotes the genus of the orientable cover of M M : (1) There exists C 1 = C 1 ( I , r 0 , K 0 , H 0 ) > 0 {C}_{1}={C}_{1}\\left(I,{r}_{0},{K}_{0},{H}_{0})\\gt 0 , such that Area ( M ) ≥ C 1 ( g ( M ) + 1 ) {\\rm{Area}}\\left(M)\\ge {C}_{1}\\left(g\\left(M)+1) . (2) There exist C > 0 C\\gt 0 , G ( I ) ∈ N G\\left(I)\\in {\\mathbb{N}} independent of r 0 , K 0 , H 0 {r}_{0},{K}_{0},{H}_{0} , and also C C independent of I I such that if g ( M ) ≥ G ( I ) g\\left(M)\\ge G\\left(I) , then Area ( M ) ≥ C ( max 1 , 1 r 0 , K 0 , H 0 ) 2 ( g ( M ) + 1 ) {\\rm{Area}}\\left(M)\\ge \\frac{C}{{\\left(\\max \\left\\{1,\\frac{1}{{r}_{0}},\\sqrt{{K}_{0}},{H}_{0}\\right\\}\\right)}^{2}}\\left(g\\left(M)+1) . (3) If the scalar curvature ρ \\rho of X X satisfies 3 H 2 + 1 2 ρ ≥ c 3{H}^{2}+\\frac{1}{2}\\rho \\ge c in X X for some c > 0 c\\gt 0 , then there exist A , D > 0 A,D\\gt 0 depending on c , I , r 0 , K 0 , H 0 c,I,{r}_{0},{K}_{0},{H}_{0} such that Area ( M ) ≤ A {\\rm{Area}}\\left(M)\\le A and Diameter ( M ) ≤ D {\\rm{Diameter}}\\left(M)\\le D . Hence, M M is compact and, by item 1, g ( M ) ≤ A / C 1 − 1 g\\left(M)\\le A\\hspace{0.1em}\\text{/}\\hspace{0.1em}{C}_{1}-1 .","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of CMC surfaces of finite index\",\"authors\":\"W. Meeks, Joaquín Pérez\",\"doi\":\"10.1515/ans-2022-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given r 0 > 0 {r}_{0}\\\\gt 0 , I ∈ N ∪ { 0 } I\\\\in {\\\\mathbb{N}}\\\\cup \\\\left\\\\{0\\\\right\\\\} , and K 0 , H 0 ≥ 0 {K}_{0},{H}_{0}\\\\ge 0 , let X X be a complete Riemannian 3-manifold with injectivity radius Inj ( X ) ≥ r 0 \\\\hspace{0.1em}\\\\text{Inj}\\\\hspace{0.1em}\\\\left(X)\\\\ge {r}_{0} and with the supremum of absolute sectional curvature at most K 0 {K}_{0} , and let M ↬ X M\\\\hspace{0.33em}\\\\looparrowright \\\\hspace{0.33em}X be a complete immersed surface of constant mean curvature H ∈ [ 0 , H 0 ] H\\\\in \\\\left[0,{H}_{0}] and with index at most I I . We will obtain geometric estimates for such an M ↬ X M\\\\hspace{0.33em}\\\\looparrowright \\\\hspace{0.33em}X as a consequence of the hierarchy structure theorem. The hierarchy structure theorem (Theorem 2.2) will be applied to understand global properties of M ↬ X M\\\\hspace{0.33em}\\\\looparrowright \\\\hspace{0.33em}X , especially results related to the area and diameter of M M . By item E of Theorem 2.2, the area of such a noncompact M ↬ X M\\\\hspace{0.33em}\\\\looparrowright \\\\hspace{0.33em}X is infinite. We will improve this area result by proving the following when M M is connected; here, g ( M ) g\\\\left(M) denotes the genus of the orientable cover of M M : (1) There exists C 1 = C 1 ( I , r 0 , K 0 , H 0 ) > 0 {C}_{1}={C}_{1}\\\\left(I,{r}_{0},{K}_{0},{H}_{0})\\\\gt 0 , such that Area ( M ) ≥ C 1 ( g ( M ) + 1 ) {\\\\rm{Area}}\\\\left(M)\\\\ge {C}_{1}\\\\left(g\\\\left(M)+1) . (2) There exist C > 0 C\\\\gt 0 , G ( I ) ∈ N G\\\\left(I)\\\\in {\\\\mathbb{N}} independent of r 0 , K 0 , H 0 {r}_{0},{K}_{0},{H}_{0} , and also C C independent of I I such that if g ( M ) ≥ G ( I ) g\\\\left(M)\\\\ge G\\\\left(I) , then Area ( M ) ≥ C ( max 1 , 1 r 0 , K 0 , H 0 ) 2 ( g ( M ) + 1 ) {\\\\rm{Area}}\\\\left(M)\\\\ge \\\\frac{C}{{\\\\left(\\\\max \\\\left\\\\{1,\\\\frac{1}{{r}_{0}},\\\\sqrt{{K}_{0}},{H}_{0}\\\\right\\\\}\\\\right)}^{2}}\\\\left(g\\\\left(M)+1) . (3) If the scalar curvature ρ \\\\rho of X X satisfies 3 H 2 + 1 2 ρ ≥ c 3{H}^{2}+\\\\frac{1}{2}\\\\rho \\\\ge c in X X for some c > 0 c\\\\gt 0 , then there exist A , D > 0 A,D\\\\gt 0 depending on c , I , r 0 , K 0 , H 0 c,I,{r}_{0},{K}_{0},{H}_{0} such that Area ( M ) ≤ A {\\\\rm{Area}}\\\\left(M)\\\\le A and Diameter ( M ) ≤ D {\\\\rm{Diameter}}\\\\left(M)\\\\le D . Hence, M M is compact and, by item 1, g ( M ) ≤ A / C 1 − 1 g\\\\left(M)\\\\le A\\\\hspace{0.1em}\\\\text{/}\\\\hspace{0.1em}{C}_{1}-1 .\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定r 0 bb0 0 {r}_{0}\gt 0, I∈n∪ { 0 } I\in {\mathbb{N}}\cup \left{0\right}, K 0, H 0≥0 {k}_{0},{h}_{0}\ge 0时,设X X为注入半径Inj (X)≥r0的完备黎曼3流形 \hspace{0.1em}\text{Inj}\hspace{0.1em}\left(x)\ge {r}_{0} 且绝对截面曲率的最大值不超过k0 {k}_{0} ,让M * X * M\hspace{0.33em}\looparrowright \hspace{0.33em}X为平均曲率H∈[0,h0] H的完全浸没面\in \left[0,{H}_{0}] 且索引不超过I。我们将得到这样一个M * X * M的几何估计\hspace{0.33em}\looparrowright \hspace{0.33em}X作为层次结构定理的结果。层次结构定理(定理2.2)将被应用于理解M的全局属性\hspace{0.33em}\looparrowright \hspace{0.33em}X,特别是与mm的面积和直径有关的结果。根据定理2.2的E项,给出了一个非紧矩阵M的面积\hspace{0.33em}\looparrowright \hspace{0.33em}X是无限的。我们将通过证明以下几点来改进这个区域的结果:这里是g (M) g\left(M)表示M M可定向覆盖物的属:(1)存在c1 = c1 (I, r 0, K 0, H 0) > {c}_{1}={c}_{1}\left(一);{r}_{0},{k}_{0},{h}_{0})\gt 0,使得Area (M)≥c1 (g (M) + 1) {\rm{Area}}\left(m)\ge {c}_{1}\left(g)\left(m)+1)(2)存在C > 0 C\gt 0, g (I)∈n g\left(i)\in {\mathbb{N}} 与r0 k0 h0无关 {r}_{0},{k}_{0},{h}_{0} ,并且C C独立于I I,使得g (M)≥g (I) g\left(m)\ge g\left(I),则Area (M)≥C (max 1,1r 0, K 0, H 0) 2 (g (M) + 1) {\rm{Area}}\left(m)\ge \frac{C}{{\left(\max \left\{1,\frac{1}{{r}_{0}},\sqrt{{K}_{0}},{H}_{0}\right\}\right)}^{2}}\left(g)\left(m)+1)(3)若标量曲率ρ \rho (X X)满足3h2 + 1 2 ρ≥c3{h}^{2}+\frac{1}{2}\rho \ge c在X X中,c在X X中,c在X X中\gt 0,那么存在A,D, bb0 0 A,D\gt 0取决于c I r 0 K 0 H 0 c I,{r}_{0},{k}_{0},{h}_{0} 使Area (M)≤A {\rm{Area}}\left(m)\le A、直径(M)≤D {\rm{Diameter}}\left(m)\le D。因此,M M是紧致的,并且根据第1项,g (M)≤A / C 1−1 g\left(m)\le a\hspace{0.1em}\text{/}\hspace{0.1em}{C}_{1}-1。
Abstract Given r 0 > 0 {r}_{0}\gt 0 , I ∈ N ∪ { 0 } I\in {\mathbb{N}}\cup \left\{0\right\} , and K 0 , H 0 ≥ 0 {K}_{0},{H}_{0}\ge 0 , let X X be a complete Riemannian 3-manifold with injectivity radius Inj ( X ) ≥ r 0 \hspace{0.1em}\text{Inj}\hspace{0.1em}\left(X)\ge {r}_{0} and with the supremum of absolute sectional curvature at most K 0 {K}_{0} , and let M ↬ X M\hspace{0.33em}\looparrowright \hspace{0.33em}X be a complete immersed surface of constant mean curvature H ∈ [ 0 , H 0 ] H\in \left[0,{H}_{0}] and with index at most I I . We will obtain geometric estimates for such an M ↬ X M\hspace{0.33em}\looparrowright \hspace{0.33em}X as a consequence of the hierarchy structure theorem. The hierarchy structure theorem (Theorem 2.2) will be applied to understand global properties of M ↬ X M\hspace{0.33em}\looparrowright \hspace{0.33em}X , especially results related to the area and diameter of M M . By item E of Theorem 2.2, the area of such a noncompact M ↬ X M\hspace{0.33em}\looparrowright \hspace{0.33em}X is infinite. We will improve this area result by proving the following when M M is connected; here, g ( M ) g\left(M) denotes the genus of the orientable cover of M M : (1) There exists C 1 = C 1 ( I , r 0 , K 0 , H 0 ) > 0 {C}_{1}={C}_{1}\left(I,{r}_{0},{K}_{0},{H}_{0})\gt 0 , such that Area ( M ) ≥ C 1 ( g ( M ) + 1 ) {\rm{Area}}\left(M)\ge {C}_{1}\left(g\left(M)+1) . (2) There exist C > 0 C\gt 0 , G ( I ) ∈ N G\left(I)\in {\mathbb{N}} independent of r 0 , K 0 , H 0 {r}_{0},{K}_{0},{H}_{0} , and also C C independent of I I such that if g ( M ) ≥ G ( I ) g\left(M)\ge G\left(I) , then Area ( M ) ≥ C ( max 1 , 1 r 0 , K 0 , H 0 ) 2 ( g ( M ) + 1 ) {\rm{Area}}\left(M)\ge \frac{C}{{\left(\max \left\{1,\frac{1}{{r}_{0}},\sqrt{{K}_{0}},{H}_{0}\right\}\right)}^{2}}\left(g\left(M)+1) . (3) If the scalar curvature ρ \rho of X X satisfies 3 H 2 + 1 2 ρ ≥ c 3{H}^{2}+\frac{1}{2}\rho \ge c in X X for some c > 0 c\gt 0 , then there exist A , D > 0 A,D\gt 0 depending on c , I , r 0 , K 0 , H 0 c,I,{r}_{0},{K}_{0},{H}_{0} such that Area ( M ) ≤ A {\rm{Area}}\left(M)\le A and Diameter ( M ) ≤ D {\rm{Diameter}}\left(M)\le D . Hence, M M is compact and, by item 1, g ( M ) ≤ A / C 1 − 1 g\left(M)\le A\hspace{0.1em}\text{/}\hspace{0.1em}{C}_{1}-1 .
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.