{"title":"分式冷冻法回收费托水产物中的羧酸","authors":"Nuvaid Ahad, Arno de Klerk","doi":"10.1007/s13203-020-00254-8","DOIUrl":null,"url":null,"abstract":"<p>About half of the product from iron-based high-temperature Fischer–Tropsch synthesis is an aqueous product containing dissolved oxygenates. Volatile oxygenates can be recovered by distillation, but the bulk of the carboxylic acids remain in the water, which is called acid water. Fractional freezing was explored as a process for producing a more concentrated carboxylic acid solution from which the carboxylic acids could be recovered as petrochemical products, while concomitantly producing a cleaner wastewater. Solid–liquid equilibrium data were collected for aqueous solutions of acetic acid, propionic acid, and butyric acid. A synthetic Fischer–Tropsch acid water mixture (0.70?wt% acetic acid, 0.15?wt% propionic acid, and 0.15?wt% butyric acid) was prepared and the liquid phase concentrations of the acid species at solid–liquid equilibrium were determined. Control experiments with material balance closure on each of the carboxylic acid species were performed at selected conditions. Having more than one carboxylic acid species present in the mixture meaningfully changed the solid–liquid equilibrium versus temperature of the system. The carboxylic acids partitioned between the solid phase and the liquid phase and a practical design would require multiple duty-controlled solid–liquid equilibrium stages, with most of the separation taking place in the temperature range 0 to ??5?°C.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"10 3","pages":"149 - 156"},"PeriodicalIF":0.1250,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-020-00254-8","citationCount":"1","resultStr":"{\"title\":\"Carboxylic acid recovery from Fischer–Tropsch aqueous product by fractional freezing\",\"authors\":\"Nuvaid Ahad, Arno de Klerk\",\"doi\":\"10.1007/s13203-020-00254-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>About half of the product from iron-based high-temperature Fischer–Tropsch synthesis is an aqueous product containing dissolved oxygenates. Volatile oxygenates can be recovered by distillation, but the bulk of the carboxylic acids remain in the water, which is called acid water. Fractional freezing was explored as a process for producing a more concentrated carboxylic acid solution from which the carboxylic acids could be recovered as petrochemical products, while concomitantly producing a cleaner wastewater. Solid–liquid equilibrium data were collected for aqueous solutions of acetic acid, propionic acid, and butyric acid. A synthetic Fischer–Tropsch acid water mixture (0.70?wt% acetic acid, 0.15?wt% propionic acid, and 0.15?wt% butyric acid) was prepared and the liquid phase concentrations of the acid species at solid–liquid equilibrium were determined. Control experiments with material balance closure on each of the carboxylic acid species were performed at selected conditions. Having more than one carboxylic acid species present in the mixture meaningfully changed the solid–liquid equilibrium versus temperature of the system. The carboxylic acids partitioned between the solid phase and the liquid phase and a practical design would require multiple duty-controlled solid–liquid equilibrium stages, with most of the separation taking place in the temperature range 0 to ??5?°C.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"10 3\",\"pages\":\"149 - 156\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-020-00254-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-020-00254-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-020-00254-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carboxylic acid recovery from Fischer–Tropsch aqueous product by fractional freezing
About half of the product from iron-based high-temperature Fischer–Tropsch synthesis is an aqueous product containing dissolved oxygenates. Volatile oxygenates can be recovered by distillation, but the bulk of the carboxylic acids remain in the water, which is called acid water. Fractional freezing was explored as a process for producing a more concentrated carboxylic acid solution from which the carboxylic acids could be recovered as petrochemical products, while concomitantly producing a cleaner wastewater. Solid–liquid equilibrium data were collected for aqueous solutions of acetic acid, propionic acid, and butyric acid. A synthetic Fischer–Tropsch acid water mixture (0.70?wt% acetic acid, 0.15?wt% propionic acid, and 0.15?wt% butyric acid) was prepared and the liquid phase concentrations of the acid species at solid–liquid equilibrium were determined. Control experiments with material balance closure on each of the carboxylic acid species were performed at selected conditions. Having more than one carboxylic acid species present in the mixture meaningfully changed the solid–liquid equilibrium versus temperature of the system. The carboxylic acids partitioned between the solid phase and the liquid phase and a practical design would require multiple duty-controlled solid–liquid equilibrium stages, with most of the separation taking place in the temperature range 0 to ??5?°C.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.