O. Olayemi, K. Al‐Farhany, S. E. Ibitoye, A. Obalalu
{"title":"混合对流换热在一个盖子驱动的同心梯形外壳:数值模拟","authors":"O. Olayemi, K. Al‐Farhany, S. E. Ibitoye, A. Obalalu","doi":"10.4028/p-kybe41","DOIUrl":null,"url":null,"abstract":"This study investigates the implications of the area ratio (AR) and Grashof number (Gr) on fluid flow properties and heat transfer due to mixed convection around heated trapezoidal blocks located concentrically inside a larger trapezium driven by a lid. The outer trapezium's upper and lower horizontal walls are moving in opposite directions. The model developed was solved using the finite element technique. The inner walls of the trapezium are retained at an isothermal temperature, while the slanted outer walls of the trapezium are perfectly insulated. The upper and lower walls of the enclosure are subjected to normalized sinusoidal temperatures. Grashof number in the range of 103£Gr£105 and area ratios ( ) of , and were investigated. The simulation outcomes are displayed as stream function, isothermal contours, and local Nusselt number. Considering the interval of for the inner block, the Nusselt number increase with diminishing area ratio for the upper wall, while the response of the lower wall to Gr variation is a function of the AR considered. At the bottom wall of the outer trapezium, results showed that the rate of heat transfer was not significantly affected by changes in area ratio. Furthermore, as the AR reduces, the heat transmission along the top wall of the outer trapezium improves with the Grashof number, with the least and peak heat transfer enhancements occurring at 50 % and 100 % percent of the wall length, respectively.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mixed Convective Heat Transfer in a Lid-Driven Concentric Trapezoidal Enclosure: Numerical Simulation\",\"authors\":\"O. Olayemi, K. Al‐Farhany, S. E. Ibitoye, A. Obalalu\",\"doi\":\"10.4028/p-kybe41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the implications of the area ratio (AR) and Grashof number (Gr) on fluid flow properties and heat transfer due to mixed convection around heated trapezoidal blocks located concentrically inside a larger trapezium driven by a lid. The outer trapezium's upper and lower horizontal walls are moving in opposite directions. The model developed was solved using the finite element technique. The inner walls of the trapezium are retained at an isothermal temperature, while the slanted outer walls of the trapezium are perfectly insulated. The upper and lower walls of the enclosure are subjected to normalized sinusoidal temperatures. Grashof number in the range of 103£Gr£105 and area ratios ( ) of , and were investigated. The simulation outcomes are displayed as stream function, isothermal contours, and local Nusselt number. Considering the interval of for the inner block, the Nusselt number increase with diminishing area ratio for the upper wall, while the response of the lower wall to Gr variation is a function of the AR considered. At the bottom wall of the outer trapezium, results showed that the rate of heat transfer was not significantly affected by changes in area ratio. Furthermore, as the AR reduces, the heat transmission along the top wall of the outer trapezium improves with the Grashof number, with the least and peak heat transfer enhancements occurring at 50 % and 100 % percent of the wall length, respectively.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-kybe41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-kybe41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Mixed Convective Heat Transfer in a Lid-Driven Concentric Trapezoidal Enclosure: Numerical Simulation
This study investigates the implications of the area ratio (AR) and Grashof number (Gr) on fluid flow properties and heat transfer due to mixed convection around heated trapezoidal blocks located concentrically inside a larger trapezium driven by a lid. The outer trapezium's upper and lower horizontal walls are moving in opposite directions. The model developed was solved using the finite element technique. The inner walls of the trapezium are retained at an isothermal temperature, while the slanted outer walls of the trapezium are perfectly insulated. The upper and lower walls of the enclosure are subjected to normalized sinusoidal temperatures. Grashof number in the range of 103£Gr£105 and area ratios ( ) of , and were investigated. The simulation outcomes are displayed as stream function, isothermal contours, and local Nusselt number. Considering the interval of for the inner block, the Nusselt number increase with diminishing area ratio for the upper wall, while the response of the lower wall to Gr variation is a function of the AR considered. At the bottom wall of the outer trapezium, results showed that the rate of heat transfer was not significantly affected by changes in area ratio. Furthermore, as the AR reduces, the heat transmission along the top wall of the outer trapezium improves with the Grashof number, with the least and peak heat transfer enhancements occurring at 50 % and 100 % percent of the wall length, respectively.
期刊介绍:
"International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.