混合Rasch模型中的伪潜在类问题:不同能力分布下三种最大似然估计方法的比较

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY International Journal of Testing Pub Date : 2018-01-02 DOI:10.1080/15305058.2017.1312408
S. Şen
{"title":"混合Rasch模型中的伪潜在类问题:不同能力分布下三种最大似然估计方法的比较","authors":"S. Şen","doi":"10.1080/15305058.2017.1312408","DOIUrl":null,"url":null,"abstract":"Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"18 1","pages":"100 - 71"},"PeriodicalIF":1.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2017.1312408","citationCount":"6","resultStr":"{\"title\":\"Spurious Latent Class Problem in the Mixed Rasch Model: A Comparison of Three Maximum Likelihood Estimation Methods under Different Ability Distributions\",\"authors\":\"S. Şen\",\"doi\":\"10.1080/15305058.2017.1312408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":\"18 1\",\"pages\":\"100 - 71\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2017.1312408\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2017.1312408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2017.1312408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

最近的研究表明,当能力分布非正态时,在混合Rasch模型的贝叶斯估计中可以观察到潜在类的过度提取。当使用最大似然估计方法(条件、边际和联合)进行估计时,本研究检验了非正态能力分布对混合Rasch模型中潜在类数量的影响。在模拟研究和实证研究中使用了三个信息准则拟合指数(Akaike信息准则、贝叶斯信息准则和样本量调整后的BIC)。这项研究的结果表明,通过边际最大似然和联合最大似然估计可以观察到虚假的潜在类问题。然而,条件最大似然估计在非正态能力分布的情况下没有表现出过度牵引问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spurious Latent Class Problem in the Mixed Rasch Model: A Comparison of Three Maximum Likelihood Estimation Methods under Different Ability Distributions
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
期刊最新文献
Combining Mokken Scale Analysis with and rasch measurement theory to explore differences in measurement quality between subgroups Examining the construct validity of the MIDUS version of the Multidimensional Personality Questionnaire (MPQ) Beyond group comparisons: Accounting for intersectional sources of bias in international survey measures Can the dark core of personality be measured briefly, multidimensionally, and invariantly? The D25 measure Investigating the acquiescent responding impact in empathy measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1