{"title":"混合Rasch模型中的伪潜在类问题:不同能力分布下三种最大似然估计方法的比较","authors":"S. Şen","doi":"10.1080/15305058.2017.1312408","DOIUrl":null,"url":null,"abstract":"Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"18 1","pages":"100 - 71"},"PeriodicalIF":1.0000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2017.1312408","citationCount":"6","resultStr":"{\"title\":\"Spurious Latent Class Problem in the Mixed Rasch Model: A Comparison of Three Maximum Likelihood Estimation Methods under Different Ability Distributions\",\"authors\":\"S. Şen\",\"doi\":\"10.1080/15305058.2017.1312408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":\"18 1\",\"pages\":\"100 - 71\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2017.1312408\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2017.1312408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2017.1312408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Spurious Latent Class Problem in the Mixed Rasch Model: A Comparison of Three Maximum Likelihood Estimation Methods under Different Ability Distributions
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood estimation methods (conditional, marginal, and joint). Three information criteria fit indices (Akaike information criterion, Bayesian information criterion, and sample size adjusted BIC) were used in a simulation study and an empirical study. Findings of this study showed that the spurious latent class problem was observed with marginal maximum likelihood and joint maximum likelihood estimations. However, conditional maximum likelihood estimation showed no overextraction problem with non-normal ability distributions.