基于MRV系统的船舶能效分析与预测

IF 3.7 3区 工程技术 Q2 TRANSPORTATION Maritime Policy & Management Pub Date : 2021-08-31 DOI:10.1080/03088839.2021.1968059
Ran Yan, Haoyu Mo, Shuaian Wang, Dong Yang
{"title":"基于MRV系统的船舶能效分析与预测","authors":"Ran Yan, Haoyu Mo, Shuaian Wang, Dong Yang","doi":"10.1080/03088839.2021.1968059","DOIUrl":null,"url":null,"abstract":"ABSTRACT To reduce CO2 emissions from shipping activities to, from, and within the European Union (EU) area, a system of monitoring, reporting, and verification (MRV) of CO2 emissions from ships are implemented in 2015 by the EU. Although the MRV records in 2018 and 2019 have been published, there are scarce studies on the MRV system especially from a quantitative perspective, which restrains the potential of the MRV. To bridge this gap, this paper first analyzes and compares MRV records in 2018 and 2019, and then develops machine learning models for annual average fuel consumption prediction for each ship type combining ship features from an external database. The performance of the prediction models is accurate, with the mean absolute percentage error (MAPE) on the test set no more than 12% and the average R-squared of all the models at 0.78. Based on the analysis and prediction results, model meanings, implications, and extensions are thoroughly discussed. This study is a pioneer to analyze the emission reports in the MRV system from a quantitative perspective. It also develops the first fuel consumption prediction models from a macro perspective using the MRV data. It can contribute to the promotion of green shipping strategies.","PeriodicalId":18288,"journal":{"name":"Maritime Policy & Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis and prediction of ship energy efficiency based on the MRV system\",\"authors\":\"Ran Yan, Haoyu Mo, Shuaian Wang, Dong Yang\",\"doi\":\"10.1080/03088839.2021.1968059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To reduce CO2 emissions from shipping activities to, from, and within the European Union (EU) area, a system of monitoring, reporting, and verification (MRV) of CO2 emissions from ships are implemented in 2015 by the EU. Although the MRV records in 2018 and 2019 have been published, there are scarce studies on the MRV system especially from a quantitative perspective, which restrains the potential of the MRV. To bridge this gap, this paper first analyzes and compares MRV records in 2018 and 2019, and then develops machine learning models for annual average fuel consumption prediction for each ship type combining ship features from an external database. The performance of the prediction models is accurate, with the mean absolute percentage error (MAPE) on the test set no more than 12% and the average R-squared of all the models at 0.78. Based on the analysis and prediction results, model meanings, implications, and extensions are thoroughly discussed. This study is a pioneer to analyze the emission reports in the MRV system from a quantitative perspective. It also develops the first fuel consumption prediction models from a macro perspective using the MRV data. It can contribute to the promotion of green shipping strategies.\",\"PeriodicalId\":18288,\"journal\":{\"name\":\"Maritime Policy & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maritime Policy & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/03088839.2021.1968059\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Policy & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/03088839.2021.1968059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 6

摘要

为了减少往返欧盟(EU)地区和欧盟内部航运活动的二氧化碳排放,欧盟于2015年实施了船舶二氧化碳排放监测、报告和核查(MRV)系统。虽然2018年和2019年的MRV记录已经公布,但对MRV系统的研究,特别是从定量角度的研究还比较少,这制约了MRV的潜力。为了弥补这一差距,本文首先对2018年和2019年的MRV记录进行了分析和比较,然后结合外部数据库中的船舶特征开发了机器学习模型,用于预测每种船型的年平均燃料消耗。预测模型性能准确,测试集上的平均绝对百分比误差(MAPE)不超过12%,所有模型的平均r平方为0.78。在分析和预测结果的基础上,深入讨论了模型的意义、含义和扩展。本研究首次从定量角度分析MRV系统中的排放报告。同时,利用MRV数据从宏观角度开发了首个油耗预测模型。它可以促进绿色航运战略的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and prediction of ship energy efficiency based on the MRV system
ABSTRACT To reduce CO2 emissions from shipping activities to, from, and within the European Union (EU) area, a system of monitoring, reporting, and verification (MRV) of CO2 emissions from ships are implemented in 2015 by the EU. Although the MRV records in 2018 and 2019 have been published, there are scarce studies on the MRV system especially from a quantitative perspective, which restrains the potential of the MRV. To bridge this gap, this paper first analyzes and compares MRV records in 2018 and 2019, and then develops machine learning models for annual average fuel consumption prediction for each ship type combining ship features from an external database. The performance of the prediction models is accurate, with the mean absolute percentage error (MAPE) on the test set no more than 12% and the average R-squared of all the models at 0.78. Based on the analysis and prediction results, model meanings, implications, and extensions are thoroughly discussed. This study is a pioneer to analyze the emission reports in the MRV system from a quantitative perspective. It also develops the first fuel consumption prediction models from a macro perspective using the MRV data. It can contribute to the promotion of green shipping strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
8.60%
发文量
66
期刊介绍: Thirty years ago maritime management decisions were taken on the basis of experience and hunch. Today, the experience is augmented by expert analysis and informed by research findings. Maritime Policy & Management provides the latest findings and analyses, and the opportunity for exchanging views through its Comment Section. A multi-disciplinary and international refereed journal, it brings together papers on the different topics that concern the maritime industry. Emphasis is placed on business, organizational, economic, sociolegal and management topics at port, community, shipping company and shipboard levels. The Journal also provides details of conferences and book reviews.
期刊最新文献
Editorial: Special issue on “Green Port and Maritime Shipping” A New wine in new wineskins: unfolding dimension of port-hinterland connectivity and market shares Dividend payments and dividend smoothing in shipping companies The role of port smartness in achieving sustainable development goals Measuring the dynamic term structure of the FFA market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1