{"title":"焦耳加热和热辐射对可渗透通道中耦合应力混合纳米流体MHD脉动流的影响","authors":"S. Rajamani, A. Subramanyam Reddy","doi":"10.15388/namc.2022.27.26741","DOIUrl":null,"url":null,"abstract":"The current work deals with the pulsatile hydromagnetic flow of blood-based couple stress hybrid nanofluid in a porous channel. For hybrid nanofluid, the fusion of gold (Au) and copper oxide (CuO) nanoparticles are suspended to the blood (base fluid). In this model, the employment of viscous dissipation, radiative heat, and Ohmic heating is incorporated. The governing flow equations (set of partial differential equations) are modernized to set of ordinary differential equations by using the perturbation technique. The nondimensional governing equations are solved by adopting the shooting procedure with the help of the Runge–Kutta fourth-order approach. Temperature distributions of hybrid nanofluid and conventional mono nanofluids are portrayed via pictorial results to claim that the hybrid nanofluid has better temperature distribution than mono nanofluids. Temperature is raising for the magnifying viscous dissipation, whereas the reverse behavior can be found with a rise in couple stress parameter. The heat transfer rate is getting high for the higher values of the Eckert number, and the same behavior is noticed with the uplifting magnetic field.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effects of Joule heating, thermal radiation on MHD pulsating flow of a couple stress hybrid nanofluid in a permeable channel\",\"authors\":\"S. Rajamani, A. Subramanyam Reddy\",\"doi\":\"10.15388/namc.2022.27.26741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work deals with the pulsatile hydromagnetic flow of blood-based couple stress hybrid nanofluid in a porous channel. For hybrid nanofluid, the fusion of gold (Au) and copper oxide (CuO) nanoparticles are suspended to the blood (base fluid). In this model, the employment of viscous dissipation, radiative heat, and Ohmic heating is incorporated. The governing flow equations (set of partial differential equations) are modernized to set of ordinary differential equations by using the perturbation technique. The nondimensional governing equations are solved by adopting the shooting procedure with the help of the Runge–Kutta fourth-order approach. Temperature distributions of hybrid nanofluid and conventional mono nanofluids are portrayed via pictorial results to claim that the hybrid nanofluid has better temperature distribution than mono nanofluids. Temperature is raising for the magnifying viscous dissipation, whereas the reverse behavior can be found with a rise in couple stress parameter. The heat transfer rate is getting high for the higher values of the Eckert number, and the same behavior is noticed with the uplifting magnetic field.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.26741\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26741","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Effects of Joule heating, thermal radiation on MHD pulsating flow of a couple stress hybrid nanofluid in a permeable channel
The current work deals with the pulsatile hydromagnetic flow of blood-based couple stress hybrid nanofluid in a porous channel. For hybrid nanofluid, the fusion of gold (Au) and copper oxide (CuO) nanoparticles are suspended to the blood (base fluid). In this model, the employment of viscous dissipation, radiative heat, and Ohmic heating is incorporated. The governing flow equations (set of partial differential equations) are modernized to set of ordinary differential equations by using the perturbation technique. The nondimensional governing equations are solved by adopting the shooting procedure with the help of the Runge–Kutta fourth-order approach. Temperature distributions of hybrid nanofluid and conventional mono nanofluids are portrayed via pictorial results to claim that the hybrid nanofluid has better temperature distribution than mono nanofluids. Temperature is raising for the magnifying viscous dissipation, whereas the reverse behavior can be found with a rise in couple stress parameter. The heat transfer rate is getting high for the higher values of the Eckert number, and the same behavior is noticed with the uplifting magnetic field.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.