有植被的倾斜水体表面冷却引起的自然对流

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL Journal of Hydraulic Research Pub Date : 2023-05-04 DOI:10.1080/00221686.2023.2222094
V. Papaioannou, P. Prinos
{"title":"有植被的倾斜水体表面冷却引起的自然对流","authors":"V. Papaioannou, P. Prinos","doi":"10.1080/00221686.2023.2222094","DOIUrl":null,"url":null,"abstract":"Natural convection induced by surface cooling in sloping water bodies with vegetation is investigated numerically. The sloping water body consists of a vegetated region with a bottom slope equal to 0.1 and a deep region with a horizontal bottom. The volume-averaged Navier–Stokes equations together with the volume-averaged energy equation are solved numerically in the vegetated region. Submerged vegetation has an equivalent porosity of 0.85. The vegetation length is either equal to the total or half the sloping region. A differential cooling is applied at the top free surface with a varying heat loss rate between the two regions. The non-vegetated sloping water body is also considered for validation purposes. The results indicate that, when cooling is reduced in the vegetated region (a) there is a time delay for the establishment of the quasi-steady regime and (b) the exchange flow rate and the gravity current's velocity decreases with increasing vegetation length. When cooling is completely blocked, different circulation patterns are developed.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural convection due to surface cooling in sloping water bodies with vegetation\",\"authors\":\"V. Papaioannou, P. Prinos\",\"doi\":\"10.1080/00221686.2023.2222094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural convection induced by surface cooling in sloping water bodies with vegetation is investigated numerically. The sloping water body consists of a vegetated region with a bottom slope equal to 0.1 and a deep region with a horizontal bottom. The volume-averaged Navier–Stokes equations together with the volume-averaged energy equation are solved numerically in the vegetated region. Submerged vegetation has an equivalent porosity of 0.85. The vegetation length is either equal to the total or half the sloping region. A differential cooling is applied at the top free surface with a varying heat loss rate between the two regions. The non-vegetated sloping water body is also considered for validation purposes. The results indicate that, when cooling is reduced in the vegetated region (a) there is a time delay for the establishment of the quasi-steady regime and (b) the exchange flow rate and the gravity current's velocity decreases with increasing vegetation length. When cooling is completely blocked, different circulation patterns are developed.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2222094\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2222094","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文对有植被的倾斜水体中地表冷却引起的自然对流进行了数值研究。倾斜水体由底部坡度为0.1的植被区和底部水平的深水区组成。在植被区对体积平均Navier-Stokes方程和体积平均能量方程进行了数值求解。淹没植被的等效孔隙度为0.85。植被长度或等于坡地总面积,或等于坡地面积的一半。在顶部自由表面应用微分冷却,两个区域之间的热损失率不同。为了验证目的,还考虑了无植被的倾斜水体。结果表明:当植被区降温减少时,(a)准稳态区建立存在时滞;(b)交换流速率和重力流速度随植被长度的增加而减小。当冷却完全阻塞时,就会形成不同的循环模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural convection due to surface cooling in sloping water bodies with vegetation
Natural convection induced by surface cooling in sloping water bodies with vegetation is investigated numerically. The sloping water body consists of a vegetated region with a bottom slope equal to 0.1 and a deep region with a horizontal bottom. The volume-averaged Navier–Stokes equations together with the volume-averaged energy equation are solved numerically in the vegetated region. Submerged vegetation has an equivalent porosity of 0.85. The vegetation length is either equal to the total or half the sloping region. A differential cooling is applied at the top free surface with a varying heat loss rate between the two regions. The non-vegetated sloping water body is also considered for validation purposes. The results indicate that, when cooling is reduced in the vegetated region (a) there is a time delay for the establishment of the quasi-steady regime and (b) the exchange flow rate and the gravity current's velocity decreases with increasing vegetation length. When cooling is completely blocked, different circulation patterns are developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
期刊最新文献
Air–water flows Lattice Boltzmann simulation of plunging breakers Simulation of a Pelton turbine using the moving particle simulation method: application to two challenging situations Flexural-gravity wave forces acting on a submerged spherical object over a flexible sea bed A finite volume model for maintaining stationarity and reducing spurious oscillations in simulations of sewer system filling and emptying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1