Cu Vinh Loc, Truong Xuan Viet, Tran Hoang Viet, Le Hoang Thao, Nguyen Hoang Viet
{"title":"基于预训练语言模型的越南语反馈情感分类深度学习","authors":"Cu Vinh Loc, Truong Xuan Viet, Tran Hoang Viet, Le Hoang Thao, Nguyen Hoang Viet","doi":"10.1142/s1469026823500165","DOIUrl":null,"url":null,"abstract":"In recent years, with the strong and outstanding development of the Internet, the need to refer to the feedback of previous customers when shopping online is increasing. Therefore, websites are developed to allow users to share experiences, reviews, comments and feedback about the services and products of businesses and organizations. The organizations also collect user feedback about their products and services to give better directions. However, with a large amount of user feedback about certain services and products, it is difficult for users, businesses, and organizations to pay attention to them all. Thus, an automatic system is necessary to analyze the sentiment of a customer feedback. Recently, the well-known pre-trained language models for Vietnamese (PhoBERT) achieved high performance in comparison with other approaches. However, this method may not focus on the local information in the text like phrases or fragments. In this paper, we propose a Convolutional Neural Network (CNN) model based on PhoBERT for sentiment classification. The output of contextualized embeddings of the PhoBERT’s last four layers is fed into the CNN. This makes the network capable of obtaining more local information from the sentiment. Besides, the PhoBERT output is also given to the transformer encoder layers in order to employ the self-attention technique, and this also makes the model more focused on the important information of the sentiment segments. The experimental results demonstrate that the proposed approach gives competitive performance compared to the existing studies on three public datasets with the opinions of Vietnamese people.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-Trained Language Model-Based Deep Learning for Sentiment Classification of Vietnamese Feedback\",\"authors\":\"Cu Vinh Loc, Truong Xuan Viet, Tran Hoang Viet, Le Hoang Thao, Nguyen Hoang Viet\",\"doi\":\"10.1142/s1469026823500165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the strong and outstanding development of the Internet, the need to refer to the feedback of previous customers when shopping online is increasing. Therefore, websites are developed to allow users to share experiences, reviews, comments and feedback about the services and products of businesses and organizations. The organizations also collect user feedback about their products and services to give better directions. However, with a large amount of user feedback about certain services and products, it is difficult for users, businesses, and organizations to pay attention to them all. Thus, an automatic system is necessary to analyze the sentiment of a customer feedback. Recently, the well-known pre-trained language models for Vietnamese (PhoBERT) achieved high performance in comparison with other approaches. However, this method may not focus on the local information in the text like phrases or fragments. In this paper, we propose a Convolutional Neural Network (CNN) model based on PhoBERT for sentiment classification. The output of contextualized embeddings of the PhoBERT’s last four layers is fed into the CNN. This makes the network capable of obtaining more local information from the sentiment. Besides, the PhoBERT output is also given to the transformer encoder layers in order to employ the self-attention technique, and this also makes the model more focused on the important information of the sentiment segments. The experimental results demonstrate that the proposed approach gives competitive performance compared to the existing studies on three public datasets with the opinions of Vietnamese people.\",\"PeriodicalId\":45994,\"journal\":{\"name\":\"International Journal of Computational Intelligence and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026823500165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823500165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Pre-Trained Language Model-Based Deep Learning for Sentiment Classification of Vietnamese Feedback
In recent years, with the strong and outstanding development of the Internet, the need to refer to the feedback of previous customers when shopping online is increasing. Therefore, websites are developed to allow users to share experiences, reviews, comments and feedback about the services and products of businesses and organizations. The organizations also collect user feedback about their products and services to give better directions. However, with a large amount of user feedback about certain services and products, it is difficult for users, businesses, and organizations to pay attention to them all. Thus, an automatic system is necessary to analyze the sentiment of a customer feedback. Recently, the well-known pre-trained language models for Vietnamese (PhoBERT) achieved high performance in comparison with other approaches. However, this method may not focus on the local information in the text like phrases or fragments. In this paper, we propose a Convolutional Neural Network (CNN) model based on PhoBERT for sentiment classification. The output of contextualized embeddings of the PhoBERT’s last four layers is fed into the CNN. This makes the network capable of obtaining more local information from the sentiment. Besides, the PhoBERT output is also given to the transformer encoder layers in order to employ the self-attention technique, and this also makes the model more focused on the important information of the sentiment segments. The experimental results demonstrate that the proposed approach gives competitive performance compared to the existing studies on three public datasets with the opinions of Vietnamese people.
期刊介绍:
The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.