Diego Viesi, M. S. Mahbub, Alessandro Brandi, J. Z. Thellufsen, Poul Alberg Østergaard, H. Lund, M. Baratieri, L. Crema
{"title":"能源社区的多目标优化:欧洲阿尔卑斯山完全脱碳的综合动态方法","authors":"Diego Viesi, M. S. Mahbub, Alessandro Brandi, J. Z. Thellufsen, Poul Alberg Østergaard, H. Lund, M. Baratieri, L. Crema","doi":"10.54337/ijsepm.7607","DOIUrl":null,"url":null,"abstract":"At the local level, energy communities are at the forefront of the European Green Deal strategy offering new opportunities for citizens to get actively involved in energy markets. The scope of this study is to propose a multi-objective optimization framework to minimize both carbon dioxide emissions and total annual costs in an energy community, considering, within different constraints, a wide availability of decision variables including local renewable energy sources, sector coupling, storage and hydrogen. The methodology involves the coupling of the software EnergyPLAN with a multi-objective evolutionary algorithm, considering 2030 and 2050 as target years and modelling a set of eight types of scenarios, each consisting of 100 optimal systems out of 10,000. The case study is an energy community in the European Alps. The results show, on the one hand, the key role of sector coupling technologies such as cogeneration, heat pumps and electric vehicles in exploiting local renewable energy sources and, on the other hand, the higher costs in introducing both electricity storage to achieve a complete decarbonisation and hydrogen as an alternative strategy in the electricity, thermal and transport sectors.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-objective optimization of an energy community: an integrated and dynamic approach for full decarbonisation in the European Alps\",\"authors\":\"Diego Viesi, M. S. Mahbub, Alessandro Brandi, J. Z. Thellufsen, Poul Alberg Østergaard, H. Lund, M. Baratieri, L. Crema\",\"doi\":\"10.54337/ijsepm.7607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the local level, energy communities are at the forefront of the European Green Deal strategy offering new opportunities for citizens to get actively involved in energy markets. The scope of this study is to propose a multi-objective optimization framework to minimize both carbon dioxide emissions and total annual costs in an energy community, considering, within different constraints, a wide availability of decision variables including local renewable energy sources, sector coupling, storage and hydrogen. The methodology involves the coupling of the software EnergyPLAN with a multi-objective evolutionary algorithm, considering 2030 and 2050 as target years and modelling a set of eight types of scenarios, each consisting of 100 optimal systems out of 10,000. The case study is an energy community in the European Alps. The results show, on the one hand, the key role of sector coupling technologies such as cogeneration, heat pumps and electric vehicles in exploiting local renewable energy sources and, on the other hand, the higher costs in introducing both electricity storage to achieve a complete decarbonisation and hydrogen as an alternative strategy in the electricity, thermal and transport sectors.\",\"PeriodicalId\":37803,\"journal\":{\"name\":\"International Journal of Sustainable Energy Planning and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy Planning and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54337/ijsepm.7607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54337/ijsepm.7607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Multi-objective optimization of an energy community: an integrated and dynamic approach for full decarbonisation in the European Alps
At the local level, energy communities are at the forefront of the European Green Deal strategy offering new opportunities for citizens to get actively involved in energy markets. The scope of this study is to propose a multi-objective optimization framework to minimize both carbon dioxide emissions and total annual costs in an energy community, considering, within different constraints, a wide availability of decision variables including local renewable energy sources, sector coupling, storage and hydrogen. The methodology involves the coupling of the software EnergyPLAN with a multi-objective evolutionary algorithm, considering 2030 and 2050 as target years and modelling a set of eight types of scenarios, each consisting of 100 optimal systems out of 10,000. The case study is an energy community in the European Alps. The results show, on the one hand, the key role of sector coupling technologies such as cogeneration, heat pumps and electric vehicles in exploiting local renewable energy sources and, on the other hand, the higher costs in introducing both electricity storage to achieve a complete decarbonisation and hydrogen as an alternative strategy in the electricity, thermal and transport sectors.
期刊介绍:
The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.