C. Irawan, Ayu Ratma Sari, Aproditha Yulianingtias, Riza Melinda, A. Mirwan
{"title":"锰铁层状双氢氧化物作为吸附剂去除合成酸性矿山水中砷的研究","authors":"C. Irawan, Ayu Ratma Sari, Aproditha Yulianingtias, Riza Melinda, A. Mirwan","doi":"10.23955/rkl.v16i2.19215","DOIUrl":null,"url":null,"abstract":"The Mn-Fe layered double hydroxide using chloride in the interlayer anion was successfully synthesized using chemical co-precipitation methods. The Mn-Fe LDH was then applied as adsorbent for arsenic removal from synthetic acid mine drainage. The adsorbent characterizations of SEM and XRD analysis showed that the Mn-Fe LDH had many different functional groups and a high specific surface area for the adsorption processes. The morphological structure of Mn-Fe LDH by the SEM-EDS analysis method shows a round shape structure with a particle size of about 1 μm, and the XRF analysis method shows that the Mn and Fe elements dominate more than other components. Batch adsorption experimental conducted using the Mn-Fe LDH with the interlayer anion of chloride as an adsorbent to study the effect of contact time, equilibrium pH, and temperature on the arsenic removal. The Mn-Fe LDH showed high adsorption uptake capacity and selectivity for the arsenic in the synthetic acid mine drainage. The adsorption and ion exchange between interlayer chloride anions in Mn-Fe LDH and As (V) solution was the main adsorption mechanism. Therefore, the Mn-Fe LDH can be used as an adsorbent in water and wastewater treatment. In contrast, this research has the potential to be processed and developed into advanced materials.","PeriodicalId":17979,"journal":{"name":"Jurnal Rekayasa Kimia & Lingkungan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Mn-Fe Layered Double Hydroxide as an Adsorbent for the Removal of Arsenic from Synthetic Acid Mine Drainage\",\"authors\":\"C. Irawan, Ayu Ratma Sari, Aproditha Yulianingtias, Riza Melinda, A. Mirwan\",\"doi\":\"10.23955/rkl.v16i2.19215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mn-Fe layered double hydroxide using chloride in the interlayer anion was successfully synthesized using chemical co-precipitation methods. The Mn-Fe LDH was then applied as adsorbent for arsenic removal from synthetic acid mine drainage. The adsorbent characterizations of SEM and XRD analysis showed that the Mn-Fe LDH had many different functional groups and a high specific surface area for the adsorption processes. The morphological structure of Mn-Fe LDH by the SEM-EDS analysis method shows a round shape structure with a particle size of about 1 μm, and the XRF analysis method shows that the Mn and Fe elements dominate more than other components. Batch adsorption experimental conducted using the Mn-Fe LDH with the interlayer anion of chloride as an adsorbent to study the effect of contact time, equilibrium pH, and temperature on the arsenic removal. The Mn-Fe LDH showed high adsorption uptake capacity and selectivity for the arsenic in the synthetic acid mine drainage. The adsorption and ion exchange between interlayer chloride anions in Mn-Fe LDH and As (V) solution was the main adsorption mechanism. Therefore, the Mn-Fe LDH can be used as an adsorbent in water and wastewater treatment. In contrast, this research has the potential to be processed and developed into advanced materials.\",\"PeriodicalId\":17979,\"journal\":{\"name\":\"Jurnal Rekayasa Kimia & Lingkungan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Rekayasa Kimia & Lingkungan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23955/rkl.v16i2.19215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Kimia & Lingkungan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23955/rkl.v16i2.19215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Mn-Fe Layered Double Hydroxide as an Adsorbent for the Removal of Arsenic from Synthetic Acid Mine Drainage
The Mn-Fe layered double hydroxide using chloride in the interlayer anion was successfully synthesized using chemical co-precipitation methods. The Mn-Fe LDH was then applied as adsorbent for arsenic removal from synthetic acid mine drainage. The adsorbent characterizations of SEM and XRD analysis showed that the Mn-Fe LDH had many different functional groups and a high specific surface area for the adsorption processes. The morphological structure of Mn-Fe LDH by the SEM-EDS analysis method shows a round shape structure with a particle size of about 1 μm, and the XRF analysis method shows that the Mn and Fe elements dominate more than other components. Batch adsorption experimental conducted using the Mn-Fe LDH with the interlayer anion of chloride as an adsorbent to study the effect of contact time, equilibrium pH, and temperature on the arsenic removal. The Mn-Fe LDH showed high adsorption uptake capacity and selectivity for the arsenic in the synthetic acid mine drainage. The adsorption and ion exchange between interlayer chloride anions in Mn-Fe LDH and As (V) solution was the main adsorption mechanism. Therefore, the Mn-Fe LDH can be used as an adsorbent in water and wastewater treatment. In contrast, this research has the potential to be processed and developed into advanced materials.