低剂量辐射效应

IF 6.1 Q1 TOXICOLOGY Current Opinion in Toxicology Pub Date : 2022-06-01 DOI:10.1016/j.cotox.2022.02.002
Shizuyo Sutou
{"title":"低剂量辐射效应","authors":"Shizuyo Sutou","doi":"10.1016/j.cotox.2022.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The Earth was highly radioactive four billion years ago when life emerged. Even today, all humans are bombarded by 20,000 radiation strikes each second. Although high radiation doses are hazardous, organisms have evolved not only to tolerate lower-dose radiation but also to benefit by it (hormesis). Hormesis is prevailing in all species in various respects. An example is that hibakusha (Japanese A-bomb survivors) have longer lifespans and have lower risk of cancer, on average. Many microbes thrive in deep subsurface regions by consuming radiation as a source of nutrition. Low-dose radiation (LDR) is effective at treating severely affected COVID-19 patients, but the invalid linear no-threshold model (LNT) hinders the full beneficial use of LDR.</p></div>","PeriodicalId":37736,"journal":{"name":"Current Opinion in Toxicology","volume":"30 ","pages":"Article 100329"},"PeriodicalIF":6.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-dose radiation effects\",\"authors\":\"Shizuyo Sutou\",\"doi\":\"10.1016/j.cotox.2022.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Earth was highly radioactive four billion years ago when life emerged. Even today, all humans are bombarded by 20,000 radiation strikes each second. Although high radiation doses are hazardous, organisms have evolved not only to tolerate lower-dose radiation but also to benefit by it (hormesis). Hormesis is prevailing in all species in various respects. An example is that hibakusha (Japanese A-bomb survivors) have longer lifespans and have lower risk of cancer, on average. Many microbes thrive in deep subsurface regions by consuming radiation as a source of nutrition. Low-dose radiation (LDR) is effective at treating severely affected COVID-19 patients, but the invalid linear no-threshold model (LNT) hinders the full beneficial use of LDR.</p></div>\",\"PeriodicalId\":37736,\"journal\":{\"name\":\"Current Opinion in Toxicology\",\"volume\":\"30 \",\"pages\":\"Article 100329\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202022000067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202022000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

40亿年前,当生命出现时,地球是高度放射性的。即使在今天,所有的人类每秒都会受到2万次辐射袭击。虽然高剂量的辐射是有害的,但生物已经进化到不仅能忍受低剂量的辐射,而且还能从中受益(激效)。在各个方面,激效在所有物种中普遍存在。例如,日本原子弹幸存者(hibakusha)平均寿命更长,患癌症的风险更低。许多微生物在地下深处通过消耗辐射作为营养来源而茁壮成长。低剂量辐射(LDR)对治疗严重感染的COVID-19患者有效,但无效的线性无阈值模型(LNT)阻碍了LDR的充分有益利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-dose radiation effects

The Earth was highly radioactive four billion years ago when life emerged. Even today, all humans are bombarded by 20,000 radiation strikes each second. Although high radiation doses are hazardous, organisms have evolved not only to tolerate lower-dose radiation but also to benefit by it (hormesis). Hormesis is prevailing in all species in various respects. An example is that hibakusha (Japanese A-bomb survivors) have longer lifespans and have lower risk of cancer, on average. Many microbes thrive in deep subsurface regions by consuming radiation as a source of nutrition. Low-dose radiation (LDR) is effective at treating severely affected COVID-19 patients, but the invalid linear no-threshold model (LNT) hinders the full beneficial use of LDR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Toxicology
Current Opinion in Toxicology Pharmacology, Toxicology and Pharmaceutics-Toxicology
CiteScore
10.40
自引率
0.00%
发文量
43
期刊介绍: The aims and scope of Current Opinion in Toxicology is to systematically provide the reader with timely and provocative views and opinions of the highest qualified and recognized experts on current advances in selected topics within the field of toxicology. The goal is that Current Opinion in Toxicology will be an invaluable source of information and perspective for researchers, teachers, managers and administrators, policy makers and students. Division of the subject into sections: For this purpose, the scope of Toxicology is divided into six selected high impact themed sections, each of which is reviewed once a year: Mechanistic Toxicology, Metabolic Toxicology, Risk assessment in Toxicology, Genomic Toxicology, Systems Toxicology, Translational Toxicology.
期刊最新文献
Editorial Board Mixture toxicity: A hot topic in toxicology and chemical risk assessment Editorial: Guardians of Tomorrow: Developmental Toxicology for Future Generations Editorial: Role of the microbiome in toxicology How single-cell transcriptomics provides insight on hepatic responses to TCDD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1