{"title":"神经网络概念的单元测试","authors":"Charles Lovering, Elizabeth-Jane Pavlick","doi":"10.1162/tacl_a_00514","DOIUrl":null,"url":null,"abstract":"Abstract Many complex problems are naturally understood in terms of symbolic concepts. For example, our concept of “cat” is related to our concepts of “ears” and “whiskers” in a non-arbitrary way. Fodor (1998) proposes one theory of concepts, which emphasizes symbolic representations related via constituency structures. Whether neural networks are consistent with such a theory is open for debate. We propose unit tests for evaluating whether a system’s behavior is consistent with several key aspects of Fodor’s criteria. Using a simple visual concept learning task, we evaluate several modern neural architectures against this specification. We find that models succeed on tests of groundedness, modularity, and reusability of concepts, but that important questions about causality remain open. Resolving these will require new methods for analyzing models’ internal states.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"10 1","pages":"1193-1208"},"PeriodicalIF":4.2000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Unit Testing for Concepts in Neural Networks\",\"authors\":\"Charles Lovering, Elizabeth-Jane Pavlick\",\"doi\":\"10.1162/tacl_a_00514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many complex problems are naturally understood in terms of symbolic concepts. For example, our concept of “cat” is related to our concepts of “ears” and “whiskers” in a non-arbitrary way. Fodor (1998) proposes one theory of concepts, which emphasizes symbolic representations related via constituency structures. Whether neural networks are consistent with such a theory is open for debate. We propose unit tests for evaluating whether a system’s behavior is consistent with several key aspects of Fodor’s criteria. Using a simple visual concept learning task, we evaluate several modern neural architectures against this specification. We find that models succeed on tests of groundedness, modularity, and reusability of concepts, but that important questions about causality remain open. Resolving these will require new methods for analyzing models’ internal states.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"10 1\",\"pages\":\"1193-1208\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00514\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00514","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Abstract Many complex problems are naturally understood in terms of symbolic concepts. For example, our concept of “cat” is related to our concepts of “ears” and “whiskers” in a non-arbitrary way. Fodor (1998) proposes one theory of concepts, which emphasizes symbolic representations related via constituency structures. Whether neural networks are consistent with such a theory is open for debate. We propose unit tests for evaluating whether a system’s behavior is consistent with several key aspects of Fodor’s criteria. Using a simple visual concept learning task, we evaluate several modern neural architectures against this specification. We find that models succeed on tests of groundedness, modularity, and reusability of concepts, but that important questions about causality remain open. Resolving these will require new methods for analyzing models’ internal states.
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.