基于BAS-PSO的无人水面舰艇推进电机参数优化

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2022-03-01 DOI:10.1177/17298814211040688
Li Bian, X. Che, Liu Chengyang, Dai Jiageng, He Hui
{"title":"基于BAS-PSO的无人水面舰艇推进电机参数优化","authors":"Li Bian, X. Che, Liu Chengyang, Dai Jiageng, He Hui","doi":"10.1177/17298814211040688","DOIUrl":null,"url":null,"abstract":"Despite advances in modern control theory and artificial intelligence technology, current methods for tuning proportional-integral-derivative (PID) controller parameters based on the traditional particle swarm optimization (PSO) algorithm do not meet the requirements for controlling an unmanned surface vessel (USV) propulsion motor. To overcome the disadvantages of the PSO algorithm, such as low precision and easily falling into a local optimum, the beetle antennae search (BAS) algorithm can be introduced into the PSO algorithm by replacing particles with beetles, and effectively prevents the PSO algorithm from easily falling into the local optimum. At the same time, the BAS algorithm will no longer be limited to single objective parameterization. Herein, we propose a PID parameter optimization method based on the hybrid BAS-PSO algorithm for a USV propulsion motor. The PID parameter optimization of propulsion motor effectively becomes a beetle foraging problem with group optimization. Numerical results show that the method can effectively solve the problems of PSO and greatly improve convergence speed. Compared with the genetic algorithm and standard PSO algorithm, the BAS-PSO algorithm is superior for PID parameter tuning and can improve performance of USV propulsion system.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter optimization of unmanned surface vessel propulsion motor based on BAS-PSO\",\"authors\":\"Li Bian, X. Che, Liu Chengyang, Dai Jiageng, He Hui\",\"doi\":\"10.1177/17298814211040688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite advances in modern control theory and artificial intelligence technology, current methods for tuning proportional-integral-derivative (PID) controller parameters based on the traditional particle swarm optimization (PSO) algorithm do not meet the requirements for controlling an unmanned surface vessel (USV) propulsion motor. To overcome the disadvantages of the PSO algorithm, such as low precision and easily falling into a local optimum, the beetle antennae search (BAS) algorithm can be introduced into the PSO algorithm by replacing particles with beetles, and effectively prevents the PSO algorithm from easily falling into the local optimum. At the same time, the BAS algorithm will no longer be limited to single objective parameterization. Herein, we propose a PID parameter optimization method based on the hybrid BAS-PSO algorithm for a USV propulsion motor. The PID parameter optimization of propulsion motor effectively becomes a beetle foraging problem with group optimization. Numerical results show that the method can effectively solve the problems of PSO and greatly improve convergence speed. Compared with the genetic algorithm and standard PSO algorithm, the BAS-PSO algorithm is superior for PID parameter tuning and can improve performance of USV propulsion system.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298814211040688\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298814211040688","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

尽管现代控制理论和人工智能技术取得了进步,但目前基于传统粒子群优化算法的比例积分微分(PID)控制器参数整定方法已不能满足无人水面舰艇推进电机的控制要求。为了克服PSO算法精度低、容易陷入局部最优的缺点,可以将甲虫天线搜索(BAS)算法引入PSO算法,用甲虫代替粒子,有效地防止了PSO算法容易陷入局部优化。同时,BAS算法将不再局限于单目标参数化。在此,我们提出了一种基于混合BAS-PSO算法的USV推进电机PID参数优化方法。推进电机的PID参数优化有效地变成了一个具有群优化的甲虫觅食问题。数值结果表明,该方法能够有效地解决粒子群算法的问题,大大提高了算法的收敛速度。与遗传算法和标准PSO算法相比,BAS-PSO算法在PID参数整定方面具有优越性,可以改善USV推进系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter optimization of unmanned surface vessel propulsion motor based on BAS-PSO
Despite advances in modern control theory and artificial intelligence technology, current methods for tuning proportional-integral-derivative (PID) controller parameters based on the traditional particle swarm optimization (PSO) algorithm do not meet the requirements for controlling an unmanned surface vessel (USV) propulsion motor. To overcome the disadvantages of the PSO algorithm, such as low precision and easily falling into a local optimum, the beetle antennae search (BAS) algorithm can be introduced into the PSO algorithm by replacing particles with beetles, and effectively prevents the PSO algorithm from easily falling into the local optimum. At the same time, the BAS algorithm will no longer be limited to single objective parameterization. Herein, we propose a PID parameter optimization method based on the hybrid BAS-PSO algorithm for a USV propulsion motor. The PID parameter optimization of propulsion motor effectively becomes a beetle foraging problem with group optimization. Numerical results show that the method can effectively solve the problems of PSO and greatly improve convergence speed. Compared with the genetic algorithm and standard PSO algorithm, the BAS-PSO algorithm is superior for PID parameter tuning and can improve performance of USV propulsion system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1