仪器变量加性危害模型的两步残差包含估计

Binyan Jiang, Jialiang Li, J. Fine
{"title":"仪器变量加性危害模型的两步残差包含估计","authors":"Binyan Jiang, Jialiang Li, J. Fine","doi":"10.1080/24709360.2017.1406567","DOIUrl":null,"url":null,"abstract":"ABSTRACT Instrumental variable (IV) methods are popular in non-experimental settings to estimate the causal effects of scientific interventions. These approaches allow for the consistent estimation of treatment effects even if major confounders are unavailable. There have been some extensions of IV methods to survival analysis recently. We specifically consider the two-step residual inclusion (2SRI) estimator proposed recently in the literature for the additive hazards regression model in this paper. Assuming linear structural equation models for the hazard function, we may attain a closed-form, two-stage estimator for the causal effect in the additive hazards model. The main contribution of this paper is to provide theoretical works for the 2SRI approach. The asymptotic properties of the estimators are rigorously established and the resulting inferences are shown to perform well in numerical studies.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"2 1","pages":"47 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2017.1406567","citationCount":"7","resultStr":"{\"title\":\"On two-step residual inclusion estimator for instrument variable additive hazards model\",\"authors\":\"Binyan Jiang, Jialiang Li, J. Fine\",\"doi\":\"10.1080/24709360.2017.1406567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Instrumental variable (IV) methods are popular in non-experimental settings to estimate the causal effects of scientific interventions. These approaches allow for the consistent estimation of treatment effects even if major confounders are unavailable. There have been some extensions of IV methods to survival analysis recently. We specifically consider the two-step residual inclusion (2SRI) estimator proposed recently in the literature for the additive hazards regression model in this paper. Assuming linear structural equation models for the hazard function, we may attain a closed-form, two-stage estimator for the causal effect in the additive hazards model. The main contribution of this paper is to provide theoretical works for the 2SRI approach. The asymptotic properties of the estimators are rigorously established and the resulting inferences are shown to perform well in numerical studies.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"2 1\",\"pages\":\"47 - 60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2017.1406567\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2017.1406567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2017.1406567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 7

摘要

工具变量(IV)方法在非实验环境中很流行,用于估计科学干预的因果效应。这些方法允许对治疗效果进行一致的估计,即使主要混杂因素不可用。近年来有一些将静脉注射方法扩展到生存分析。我们特别考虑了文献中最近提出的两步残差包含(2SRI)估计量用于本文的加性危害回归模型。假设危害函数为线性结构方程模型,我们可以得到加性危害模型中因果效应的一个封闭的两阶段估计。本文的主要贡献是为2SRI方法提供理论工作。严格地建立了估计量的渐近性质,由此得到的推论在数值研究中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On two-step residual inclusion estimator for instrument variable additive hazards model
ABSTRACT Instrumental variable (IV) methods are popular in non-experimental settings to estimate the causal effects of scientific interventions. These approaches allow for the consistent estimation of treatment effects even if major confounders are unavailable. There have been some extensions of IV methods to survival analysis recently. We specifically consider the two-step residual inclusion (2SRI) estimator proposed recently in the literature for the additive hazards regression model in this paper. Assuming linear structural equation models for the hazard function, we may attain a closed-form, two-stage estimator for the causal effect in the additive hazards model. The main contribution of this paper is to provide theoretical works for the 2SRI approach. The asymptotic properties of the estimators are rigorously established and the resulting inferences are shown to perform well in numerical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1