基于脆弱性生命周期的关键节点识别及网络拓扑的重要性

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2023-01-20 DOI:10.4018/ijdcf.317100
Yuwen Zhu, Lei Yu
{"title":"基于脆弱性生命周期的关键节点识别及网络拓扑的重要性","authors":"Yuwen Zhu, Lei Yu","doi":"10.4018/ijdcf.317100","DOIUrl":null,"url":null,"abstract":"The key network node identification technology plays an important role in comprehending unknown terrains and rapid action planning in network attack and defense confrontation. The conventional key node identification algorithm only takes one type of relationship into consideration; therefore, it is incapable of representing the characteristics of multiple relationships between nodes. Additionally, it typically disregards the periodic change law of network node vulnerability over time. In order to solve the above problems, this paper proposes a network key node identification method based on the vulnerability life cycle and the significance of the network topology. Based on the CVSS score, this paper proposes the calculation method of the vulnerability life cycle risk value, and identifies the key nodes of the network based on the importance of the network topology. Finally, it demonstrates the effectiveness of the method in the selection of key nodes through network instance analysis.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key Node Identification Based on Vulnerability Life Cycle and the Importance of Network Topology\",\"authors\":\"Yuwen Zhu, Lei Yu\",\"doi\":\"10.4018/ijdcf.317100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key network node identification technology plays an important role in comprehending unknown terrains and rapid action planning in network attack and defense confrontation. The conventional key node identification algorithm only takes one type of relationship into consideration; therefore, it is incapable of representing the characteristics of multiple relationships between nodes. Additionally, it typically disregards the periodic change law of network node vulnerability over time. In order to solve the above problems, this paper proposes a network key node identification method based on the vulnerability life cycle and the significance of the network topology. Based on the CVSS score, this paper proposes the calculation method of the vulnerability life cycle risk value, and identifies the key nodes of the network based on the importance of the network topology. Finally, it demonstrates the effectiveness of the method in the selection of key nodes through network instance analysis.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdcf.317100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.317100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

关键网络节点识别技术在网络攻防对抗中对未知地形的理解和快速行动规划起着重要作用。传统的关键节点识别算法只考虑一种类型的关系;因此,它不能表示节点之间的多个关系的特征。此外,它通常忽略了网络节点漏洞随时间的周期性变化规律。为了解决上述问题,本文提出了一种基于脆弱性生命周期和网络拓扑意义的网络关键节点识别方法。基于CVSS评分,提出了脆弱性生命周期风险值的计算方法,并根据网络拓扑的重要性确定了网络的关键节点。最后,通过网络实例分析,验证了该方法在关键节点选择方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Key Node Identification Based on Vulnerability Life Cycle and the Importance of Network Topology
The key network node identification technology plays an important role in comprehending unknown terrains and rapid action planning in network attack and defense confrontation. The conventional key node identification algorithm only takes one type of relationship into consideration; therefore, it is incapable of representing the characteristics of multiple relationships between nodes. Additionally, it typically disregards the periodic change law of network node vulnerability over time. In order to solve the above problems, this paper proposes a network key node identification method based on the vulnerability life cycle and the significance of the network topology. Based on the CVSS score, this paper proposes the calculation method of the vulnerability life cycle risk value, and identifies the key nodes of the network based on the importance of the network topology. Finally, it demonstrates the effectiveness of the method in the selection of key nodes through network instance analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1