Andreas Siswandi, Y. Djamil, R. Rachmayani, S. Y. Cahyarini, M. Hendrizan
{"title":"地表风对印度太平洋暖池长期收缩作用的一阶分析","authors":"Andreas Siswandi, Y. Djamil, R. Rachmayani, S. Y. Cahyarini, M. Hendrizan","doi":"10.22146/ijg.75502","DOIUrl":null,"url":null,"abstract":"Due to its high evaporation rate, the Indo-Pacific Warm Pool (IPWP) is one of the most important drivers of Indonesian weather and climate. Previous studies, based on the Sea Surface Temperature (SST) proxy records, suggest that IPWP in the mid-Holocene era (~6000 years ago) underwent a contraction (colder on its east-west perimeter and warmer on its center) compared to today’s condition. In this research, the role of surface wind in contracting the IPWP was analyzed by checking the coherency between changes in SST, wind-stress magnitude, and evaporation. The Climate Community System Model version 4 (CCSM4) simulated these three physical quantities under the pre-Industrial and mid-Holocene scenarios. In these simulations, an anti-phase relation between SST and wind-stress magnitude indicates an important role for a weaker surface wind in warming the SST in the center of the IPWP (South China Sea and Banda Sea), mainly during boreal autumn. However, a weaker surface wind did not seem to have simultaneously suppressed ocean evaporation to warm the SST, as shown by the phase-lag relation in their monthly climatology. On the other hand, colder SSTs on the east-west perimeter of the IPWP (western coast of Sumatra and northern coast of Papua) are unlikely to be associated with changes in the surface wind following a weak correlation between their SST and wind-stress magnitude ","PeriodicalId":52460,"journal":{"name":"Indonesian Journal of Geography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-order analyses on the role of surface wind in the long-term contraction of the Indo-Pacific warm pool\",\"authors\":\"Andreas Siswandi, Y. Djamil, R. Rachmayani, S. Y. Cahyarini, M. Hendrizan\",\"doi\":\"10.22146/ijg.75502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its high evaporation rate, the Indo-Pacific Warm Pool (IPWP) is one of the most important drivers of Indonesian weather and climate. Previous studies, based on the Sea Surface Temperature (SST) proxy records, suggest that IPWP in the mid-Holocene era (~6000 years ago) underwent a contraction (colder on its east-west perimeter and warmer on its center) compared to today’s condition. In this research, the role of surface wind in contracting the IPWP was analyzed by checking the coherency between changes in SST, wind-stress magnitude, and evaporation. The Climate Community System Model version 4 (CCSM4) simulated these three physical quantities under the pre-Industrial and mid-Holocene scenarios. In these simulations, an anti-phase relation between SST and wind-stress magnitude indicates an important role for a weaker surface wind in warming the SST in the center of the IPWP (South China Sea and Banda Sea), mainly during boreal autumn. However, a weaker surface wind did not seem to have simultaneously suppressed ocean evaporation to warm the SST, as shown by the phase-lag relation in their monthly climatology. On the other hand, colder SSTs on the east-west perimeter of the IPWP (western coast of Sumatra and northern coast of Papua) are unlikely to be associated with changes in the surface wind following a weak correlation between their SST and wind-stress magnitude \",\"PeriodicalId\":52460,\"journal\":{\"name\":\"Indonesian Journal of Geography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Geography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijg.75502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Geography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijg.75502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
First-order analyses on the role of surface wind in the long-term contraction of the Indo-Pacific warm pool
Due to its high evaporation rate, the Indo-Pacific Warm Pool (IPWP) is one of the most important drivers of Indonesian weather and climate. Previous studies, based on the Sea Surface Temperature (SST) proxy records, suggest that IPWP in the mid-Holocene era (~6000 years ago) underwent a contraction (colder on its east-west perimeter and warmer on its center) compared to today’s condition. In this research, the role of surface wind in contracting the IPWP was analyzed by checking the coherency between changes in SST, wind-stress magnitude, and evaporation. The Climate Community System Model version 4 (CCSM4) simulated these three physical quantities under the pre-Industrial and mid-Holocene scenarios. In these simulations, an anti-phase relation between SST and wind-stress magnitude indicates an important role for a weaker surface wind in warming the SST in the center of the IPWP (South China Sea and Banda Sea), mainly during boreal autumn. However, a weaker surface wind did not seem to have simultaneously suppressed ocean evaporation to warm the SST, as shown by the phase-lag relation in their monthly climatology. On the other hand, colder SSTs on the east-west perimeter of the IPWP (western coast of Sumatra and northern coast of Papua) are unlikely to be associated with changes in the surface wind following a weak correlation between their SST and wind-stress magnitude
期刊介绍:
Indonesian Journal of Geography ISSN 2354-9114 (online), ISSN 0024-9521 (print) is an international journal published by the Faculty of Geography, Universitas Gadjah Mada in collaboration with The Indonesian Geographers Association. Our scope of publications include physical geography, human geography, regional planning and development, cartography, remote sensing, geographic information system, environmental science, and social science. IJG publishes its issues three times a year in April, August, and December. Indonesian Journal of Geography welcomes high-quality original and well-written manuscripts on any of the following topics: 1. Geomorphology 2. Climatology 3. Biogeography 4. Soils Geography 5. Population Geography 6. Behavioral Geography 7. Economic Geography 8. Political Geography 9. Historical Geography 10. Geographic Information Systems 11. Cartography 12. Quantification Methods in Geography 13. Remote Sensing 14. Regional development and planning 15. Disaster The Journal publishes Research Articles, Review Article, Short Communications, Comments/Responses and Corrections