{"title":"克隆造血:恶性和非恶性疾病的融合","authors":"A. E. Lin, P. Rauch, S. Jaiswal, B. Ebert","doi":"10.1146/annurev-cancerbio-060121-120026","DOIUrl":null,"url":null,"abstract":"Clonal hematopoiesis of indeterminate potential (CHIP) is a state in which somatic mutations in hematopoietic stem cells lead to clonal expansion of blood cells in individuals without hematologic malignancy. The mutated genes, including TET2, DNMT3A, ASXL1, TP53, JAK2, and SF3B1, are also recurrently mutated in myeloid malignancies. Individuals with CHIP have an increased risk of developing a hematologic cancer. Moreover, individuals with CHIP have an elevated risk of all-cause mortality that is significantly attributable to cardiovascular disease, independent of traditional risk factors. The mechanism for this increased risk is likely linked to increased inflammation driven by mutated macrophages, in part through inflammasome activation. This has broadened our understanding of how chronic diseases are influenced by CHIP and of the mechanistic role of inflammation in these disorders. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":54233,"journal":{"name":"Annual Review of Cancer Biology-Series","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clonal Hematopoiesis: Confluence of Malignant and Nonmalignant Diseases\",\"authors\":\"A. E. Lin, P. Rauch, S. Jaiswal, B. Ebert\",\"doi\":\"10.1146/annurev-cancerbio-060121-120026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clonal hematopoiesis of indeterminate potential (CHIP) is a state in which somatic mutations in hematopoietic stem cells lead to clonal expansion of blood cells in individuals without hematologic malignancy. The mutated genes, including TET2, DNMT3A, ASXL1, TP53, JAK2, and SF3B1, are also recurrently mutated in myeloid malignancies. Individuals with CHIP have an increased risk of developing a hematologic cancer. Moreover, individuals with CHIP have an elevated risk of all-cause mortality that is significantly attributable to cardiovascular disease, independent of traditional risk factors. The mechanism for this increased risk is likely linked to increased inflammation driven by mutated macrophages, in part through inflammasome activation. This has broadened our understanding of how chronic diseases are influenced by CHIP and of the mechanistic role of inflammation in these disorders. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":54233,\"journal\":{\"name\":\"Annual Review of Cancer Biology-Series\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Cancer Biology-Series\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cancerbio-060121-120026\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology-Series","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-060121-120026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Clonal Hematopoiesis: Confluence of Malignant and Nonmalignant Diseases
Clonal hematopoiesis of indeterminate potential (CHIP) is a state in which somatic mutations in hematopoietic stem cells lead to clonal expansion of blood cells in individuals without hematologic malignancy. The mutated genes, including TET2, DNMT3A, ASXL1, TP53, JAK2, and SF3B1, are also recurrently mutated in myeloid malignancies. Individuals with CHIP have an increased risk of developing a hematologic cancer. Moreover, individuals with CHIP have an elevated risk of all-cause mortality that is significantly attributable to cardiovascular disease, independent of traditional risk factors. The mechanism for this increased risk is likely linked to increased inflammation driven by mutated macrophages, in part through inflammasome activation. This has broadened our understanding of how chronic diseases are influenced by CHIP and of the mechanistic role of inflammation in these disorders. Expected final online publication date for the Annual Review of Cancer Biology, Volume 6 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Cancer Biology offers comprehensive reviews on various topics within cancer research, covering pivotal and emerging areas in the field. As our understanding of cancer's fundamental mechanisms deepens and more findings transition into targeted clinical treatments, the journal is structured around three main themes: Cancer Cell Biology, Tumorigenesis and Cancer Progression, and Translational Cancer Science. The current volume of this journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, ensuring all articles are published under a CC BY license.