芳香侧链中的1H R1ρ弛豫色散实验

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-09-12 DOI:10.1007/s10858-021-00382-w
Matthias Dreydoppel, Roman J. Lichtenecker, Mikael Akke, Ulrich Weininger
{"title":"芳香侧链中的1H R1ρ弛豫色散实验","authors":"Matthias Dreydoppel,&nbsp;Roman J. Lichtenecker,&nbsp;Mikael Akke,&nbsp;Ulrich Weininger","doi":"10.1007/s10858-021-00382-w","DOIUrl":null,"url":null,"abstract":"<div><p>Aromatic side chains are attractive probes of protein dynamic, since they are often key residues in enzyme active sites and protein binding sites. Dynamic processes on microsecond to millisecond timescales can be studied by relaxation dispersion experiments that attenuate conformational exchange contributions to the transverse relaxation rate by varying the refocusing frequency of applied radio-frequency fields implemented as either CPMG pulse trains or continuous spin-lock periods. Here we present an aromatic <sup>1</sup>H <i>R</i><sub>1<i>ρ</i></sub> relaxation dispersion experiment enabling studies of two to three times faster exchange processes than achievable by existing experiments for aromatic side chains. We show that site-specific isotope labeling schemes generating isolated <sup>1</sup>H–<sup>13</sup>C spin pairs with vicinal <sup>2</sup>H–<sup>12</sup>C moieties are necessary to avoid anomalous relaxation dispersion profiles caused by Hartmann–Hahn matching due to the <sup>3</sup><i>J</i><sub>HH</sub> couplings and limited chemical shift differences among <sup>1</sup>H spins in phenylalanine, tyrosine and the six-ring moiety of tryptophan. This labeling pattern is sufficient in that remote protons do not cause additional complications. We validated the approach by measuring ring-flip kinetics in the small protein GB1. The determined rate constants, <i>k</i><sub>flip</sub>, agree well with previous results from <sup>13</sup>C <i>R</i><sub>1<i>ρ</i></sub> relaxation dispersion experiments, and yield <sup>1</sup>H chemical shift differences between the two sides of the ring in good agreement with values measured under slow-exchange conditions. The aromatic<sup>1</sup>H <i>R</i><sub>1<i>ρ</i></sub> relaxation dispersion experiment in combination with the site-selective <sup>1</sup>H–<sup>13</sup>C/<sup>2</sup>H–<sup>12</sup>C labeling scheme enable measurement of exchange rates up to <i>k</i><sub>ex</sub> = 2<i>k</i><sub>flip</sub> = 80,000 s<sup>–1</sup>, and serve as a useful complement to previously developed <sup>13</sup>C-based methods.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-021-00382-w.pdf","citationCount":"3","resultStr":"{\"title\":\"1H R1ρ relaxation dispersion experiments in aromatic side chains\",\"authors\":\"Matthias Dreydoppel,&nbsp;Roman J. Lichtenecker,&nbsp;Mikael Akke,&nbsp;Ulrich Weininger\",\"doi\":\"10.1007/s10858-021-00382-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aromatic side chains are attractive probes of protein dynamic, since they are often key residues in enzyme active sites and protein binding sites. Dynamic processes on microsecond to millisecond timescales can be studied by relaxation dispersion experiments that attenuate conformational exchange contributions to the transverse relaxation rate by varying the refocusing frequency of applied radio-frequency fields implemented as either CPMG pulse trains or continuous spin-lock periods. Here we present an aromatic <sup>1</sup>H <i>R</i><sub>1<i>ρ</i></sub> relaxation dispersion experiment enabling studies of two to three times faster exchange processes than achievable by existing experiments for aromatic side chains. We show that site-specific isotope labeling schemes generating isolated <sup>1</sup>H–<sup>13</sup>C spin pairs with vicinal <sup>2</sup>H–<sup>12</sup>C moieties are necessary to avoid anomalous relaxation dispersion profiles caused by Hartmann–Hahn matching due to the <sup>3</sup><i>J</i><sub>HH</sub> couplings and limited chemical shift differences among <sup>1</sup>H spins in phenylalanine, tyrosine and the six-ring moiety of tryptophan. This labeling pattern is sufficient in that remote protons do not cause additional complications. We validated the approach by measuring ring-flip kinetics in the small protein GB1. The determined rate constants, <i>k</i><sub>flip</sub>, agree well with previous results from <sup>13</sup>C <i>R</i><sub>1<i>ρ</i></sub> relaxation dispersion experiments, and yield <sup>1</sup>H chemical shift differences between the two sides of the ring in good agreement with values measured under slow-exchange conditions. The aromatic<sup>1</sup>H <i>R</i><sub>1<i>ρ</i></sub> relaxation dispersion experiment in combination with the site-selective <sup>1</sup>H–<sup>13</sup>C/<sup>2</sup>H–<sup>12</sup>C labeling scheme enable measurement of exchange rates up to <i>k</i><sub>ex</sub> = 2<i>k</i><sub>flip</sub> = 80,000 s<sup>–1</sup>, and serve as a useful complement to previously developed <sup>13</sup>C-based methods.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10858-021-00382-w.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-021-00382-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00382-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

芳香侧链通常是酶活性位点和蛋白质结合位点的关键残基,是蛋白质动力学的重要探针。在微秒到毫秒时间尺度上的动态过程可以通过弛豫色散实验来研究,该实验通过改变应用于CPMG脉冲序列或连续自旋锁定周期的射频场的重聚焦频率来衰减构象交换对横向弛豫速率的贡献。在这里,我们提出了一个芳香1H R1ρ弛豫分散实验,使研究的交换过程比现有的芳香侧链实验快两到三倍。我们发现,为了避免由于3JHH偶联和苯基丙氨酸、酪氨酸和色氨酸六环部分的1H自旋之间有限的化学位移差异而引起的哈特曼-哈恩匹配引起的异常弛豫色散分布,需要特定位点的同位素标记方案产生具有相邻2H-12C基团的孤立1H - 13c自旋对。这种标记模式是足够的,因为远程质子不会引起额外的并发症。我们通过测量小蛋白GB1的环翻转动力学来验证该方法。测定的速率常数kflip与先前的13C R1ρ弛豫色散实验结果吻合较好,环两侧的1H化学位移差与慢交换条件下的测量值吻合较好。芳香1h R1ρ弛豫色散实验与位点选择性1H-13C / 2H-12C标记方案相结合,可以测量高达kex = 2kflip = 80000 s-1的交换率,并作为先前开发的基于13c的方法的有用补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1H R1ρ relaxation dispersion experiments in aromatic side chains

Aromatic side chains are attractive probes of protein dynamic, since they are often key residues in enzyme active sites and protein binding sites. Dynamic processes on microsecond to millisecond timescales can be studied by relaxation dispersion experiments that attenuate conformational exchange contributions to the transverse relaxation rate by varying the refocusing frequency of applied radio-frequency fields implemented as either CPMG pulse trains or continuous spin-lock periods. Here we present an aromatic 1H R1ρ relaxation dispersion experiment enabling studies of two to three times faster exchange processes than achievable by existing experiments for aromatic side chains. We show that site-specific isotope labeling schemes generating isolated 1H–13C spin pairs with vicinal 2H–12C moieties are necessary to avoid anomalous relaxation dispersion profiles caused by Hartmann–Hahn matching due to the 3JHH couplings and limited chemical shift differences among 1H spins in phenylalanine, tyrosine and the six-ring moiety of tryptophan. This labeling pattern is sufficient in that remote protons do not cause additional complications. We validated the approach by measuring ring-flip kinetics in the small protein GB1. The determined rate constants, kflip, agree well with previous results from 13C R1ρ relaxation dispersion experiments, and yield 1H chemical shift differences between the two sides of the ring in good agreement with values measured under slow-exchange conditions. The aromatic1H R1ρ relaxation dispersion experiment in combination with the site-selective 1H–13C/2H–12C labeling scheme enable measurement of exchange rates up to kex = 2kflip = 80,000 s–1, and serve as a useful complement to previously developed 13C-based methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1