{"title":"无序关联与量子混沌","authors":"Ignacio Garc'ia-Mata, R. Jalabert, D. Wisniacki","doi":"10.4249/scholarpedia.55237","DOIUrl":null,"url":null,"abstract":"Quantum Chaos has originally emerged as the field which studies how the properties of classical chaotic systems arise in their quantum counterparts. The growing interest in quantum many-body systems, with no obvious classical meaning has led to consider time-dependent quantities that can help to characterize and redefine Quantum Chaos. This article reviews the prominent role that the out of time ordered correlator (OTOC) plays to achieve such goal.","PeriodicalId":74760,"journal":{"name":"Scholarpedia journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Out-of-time-order correlations and quantum chaos\",\"authors\":\"Ignacio Garc'ia-Mata, R. Jalabert, D. Wisniacki\",\"doi\":\"10.4249/scholarpedia.55237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Chaos has originally emerged as the field which studies how the properties of classical chaotic systems arise in their quantum counterparts. The growing interest in quantum many-body systems, with no obvious classical meaning has led to consider time-dependent quantities that can help to characterize and redefine Quantum Chaos. This article reviews the prominent role that the out of time ordered correlator (OTOC) plays to achieve such goal.\",\"PeriodicalId\":74760,\"journal\":{\"name\":\"Scholarpedia journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarpedia journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4249/scholarpedia.55237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarpedia journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4249/scholarpedia.55237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum Chaos has originally emerged as the field which studies how the properties of classical chaotic systems arise in their quantum counterparts. The growing interest in quantum many-body systems, with no obvious classical meaning has led to consider time-dependent quantities that can help to characterize and redefine Quantum Chaos. This article reviews the prominent role that the out of time ordered correlator (OTOC) plays to achieve such goal.