螺旋位移桩静载试验中残余力的识别

IF 0.7 Q4 MECHANICS Studia Geotechnica et Mechanica Pub Date : 2021-12-01 DOI:10.2478/sgem-2021-0025
A. Krasinski, M. Wiszniewski
{"title":"螺旋位移桩静载试验中残余力的识别","authors":"A. Krasinski, M. Wiszniewski","doi":"10.2478/sgem-2021-0025","DOIUrl":null,"url":null,"abstract":"Abstract Occurrence of the so-called residual force of an unknown value significantly disturbs interpretation of static load tests performed on piles equipped with additional measuring instruments. Screw displacement piles are the piling technology in which the residual force phenomenon is very common. Its formation mechanism is closely related to the installation method of this type of piles, which initiates generation of negative pile skin friction without any additional external factors. Knowledge of the value and distribution of a residual force (trapped in a pile shaft before starting the load test) is a necessary condition for the proper interpretation of instrumented pile test results. In this article, a clear and easy-to-use method of residual force identification, based on the analysis of shaft deformations recorded during pile unloading is presented. The method was successfully verified on two pile examples and proved to be effective and practical.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of residual force in static load tests on instrumented screw displacement piles\",\"authors\":\"A. Krasinski, M. Wiszniewski\",\"doi\":\"10.2478/sgem-2021-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Occurrence of the so-called residual force of an unknown value significantly disturbs interpretation of static load tests performed on piles equipped with additional measuring instruments. Screw displacement piles are the piling technology in which the residual force phenomenon is very common. Its formation mechanism is closely related to the installation method of this type of piles, which initiates generation of negative pile skin friction without any additional external factors. Knowledge of the value and distribution of a residual force (trapped in a pile shaft before starting the load test) is a necessary condition for the proper interpretation of instrumented pile test results. In this article, a clear and easy-to-use method of residual force identification, based on the analysis of shaft deformations recorded during pile unloading is presented. The method was successfully verified on two pile examples and proved to be effective and practical.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2021-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

所谓未知值的残余力的出现严重干扰了在配备附加测量仪器的桩上进行的静载试验的解释。螺旋位移桩是残力现象十分普遍的桩技术。其形成机理与该类型桩的安装方式密切相关,在没有任何附加外部因素的情况下,引发负桩皮摩的产生。了解残余力的值和分布(在开始荷载试验之前被困在桩轴上)是正确解释仪器测桩结果的必要条件。本文提出了一种基于桩基卸荷过程中记录的桩身变形分析的清晰易用的剩余力识别方法。通过对两桩实例的验证,证明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of residual force in static load tests on instrumented screw displacement piles
Abstract Occurrence of the so-called residual force of an unknown value significantly disturbs interpretation of static load tests performed on piles equipped with additional measuring instruments. Screw displacement piles are the piling technology in which the residual force phenomenon is very common. Its formation mechanism is closely related to the installation method of this type of piles, which initiates generation of negative pile skin friction without any additional external factors. Knowledge of the value and distribution of a residual force (trapped in a pile shaft before starting the load test) is a necessary condition for the proper interpretation of instrumented pile test results. In this article, a clear and easy-to-use method of residual force identification, based on the analysis of shaft deformations recorded during pile unloading is presented. The method was successfully verified on two pile examples and proved to be effective and practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
20
审稿时长
16 weeks
期刊介绍: An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories
期刊最新文献
Modeling of rigid inclusion ground improvements in large-scale geotechnical simulations Seismicity and Tectonics of the Republic of Kosovo Small-strain stiffness of selected anthropogenic aggregates from bender element tests The Role of Spatial Distribution of Geotechnical Soil Parameters in Site Investigation Geometrization of a 3D numerical model of an underground facility based on the results of terrestrial laser scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1