Aitzol Galletebeitia, J. Álvarez, I. Pombo, D. Barrenetxea, J. A. Sánchez
{"title":"传统砂轮运动学数值修整模型的设计与验证","authors":"Aitzol Galletebeitia, J. Álvarez, I. Pombo, D. Barrenetxea, J. A. Sánchez","doi":"10.1504/IJAT.2019.10022952","DOIUrl":null,"url":null,"abstract":"Dressing is one of the most critical parameters that determine the efficiency of subsequent grinding processes. In this study, the analysis and validation of a kinematic dressing model for the case of corundum wheels is done. The accuracy of the model is evaluated by predicting the abrasive surface after the dressing operation for the case of a single-point dresser, observing the deviations between simulations and experimental results. These results show deviations of 19.2%, 7.57% and 19.69% for the roughness parameters root mean square height (Sq), density of peaks (Spd), and reduced peak height (Spk) respectively, which are indicators of the cutting ability of the grinding wheel and have influence on subsequent grinding processes in terms of the surface finish on the ground parts. These results show the way of future research work, giving useful information for optimising this numerical model and extending the analysis for different types of dressing tools.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and validation of a kinematic numerical dressing model of conventional grinding wheels\",\"authors\":\"Aitzol Galletebeitia, J. Álvarez, I. Pombo, D. Barrenetxea, J. A. Sánchez\",\"doi\":\"10.1504/IJAT.2019.10022952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dressing is one of the most critical parameters that determine the efficiency of subsequent grinding processes. In this study, the analysis and validation of a kinematic dressing model for the case of corundum wheels is done. The accuracy of the model is evaluated by predicting the abrasive surface after the dressing operation for the case of a single-point dresser, observing the deviations between simulations and experimental results. These results show deviations of 19.2%, 7.57% and 19.69% for the roughness parameters root mean square height (Sq), density of peaks (Spd), and reduced peak height (Spk) respectively, which are indicators of the cutting ability of the grinding wheel and have influence on subsequent grinding processes in terms of the surface finish on the ground parts. These results show the way of future research work, giving useful information for optimising this numerical model and extending the analysis for different types of dressing tools.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2019.10022952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2019.10022952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Design and validation of a kinematic numerical dressing model of conventional grinding wheels
Dressing is one of the most critical parameters that determine the efficiency of subsequent grinding processes. In this study, the analysis and validation of a kinematic dressing model for the case of corundum wheels is done. The accuracy of the model is evaluated by predicting the abrasive surface after the dressing operation for the case of a single-point dresser, observing the deviations between simulations and experimental results. These results show deviations of 19.2%, 7.57% and 19.69% for the roughness parameters root mean square height (Sq), density of peaks (Spd), and reduced peak height (Spk) respectively, which are indicators of the cutting ability of the grinding wheel and have influence on subsequent grinding processes in terms of the surface finish on the ground parts. These results show the way of future research work, giving useful information for optimising this numerical model and extending the analysis for different types of dressing tools.