使用苯基硼酸修饰的纳米孔移液管检测万古霉素

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Electroanalysis Pub Date : 2023-07-23 DOI:10.1002/elan.202300173
Fumiya Sato, Haruka Nakano, Toshio Kamijo, Kazuhiro Watanabe, Tsutomu Fujimura, Yasufumi Takahashi, Katsuhiko Sato
{"title":"使用苯基硼酸修饰的纳米孔移液管检测万古霉素","authors":"Fumiya Sato,&nbsp;Haruka Nakano,&nbsp;Toshio Kamijo,&nbsp;Kazuhiro Watanabe,&nbsp;Tsutomu Fujimura,&nbsp;Yasufumi Takahashi,&nbsp;Katsuhiko Sato","doi":"10.1002/elan.202300173","DOIUrl":null,"url":null,"abstract":"<p>Nanopore sensing measures the changes in charge and physical state around the nanopores as changes in ionic current. In this study, we performed vancomycin (VCM) sensing with nanopores modified via Au−S bonds with dithiobis(4-butyrylamino-<i>m</i>-phenylboronic acid) (DTBA-PBA), a derivative of phenylboronic acid (PBA) bearing a thiol. First, we modified a 3-mm-diameter Au electrode with a DTBA-PBA self-assembled monolayer (SAM) to confirm the VCM response of the PBA interface by cyclic voltammetry. DTBA-PBA was then immobilized in the same manner on a nanopore pipette coated with an Au layer. We measured the VCM concentration from the change in ion current using the nanopore pipette. A VCM concentration-dependent ionic current response was observed in the range of 0.01–1 mM. Many kinds of pharmaceuticals can bind to PBA; therefore, this method could be used for quick, easy, in situ quantification of not only VCM but also other pharmaceuticals with serious side effects.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"35 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vancomycin sensing using a phenylboronic acid-modified nanopore pipette\",\"authors\":\"Fumiya Sato,&nbsp;Haruka Nakano,&nbsp;Toshio Kamijo,&nbsp;Kazuhiro Watanabe,&nbsp;Tsutomu Fujimura,&nbsp;Yasufumi Takahashi,&nbsp;Katsuhiko Sato\",\"doi\":\"10.1002/elan.202300173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanopore sensing measures the changes in charge and physical state around the nanopores as changes in ionic current. In this study, we performed vancomycin (VCM) sensing with nanopores modified via Au−S bonds with dithiobis(4-butyrylamino-<i>m</i>-phenylboronic acid) (DTBA-PBA), a derivative of phenylboronic acid (PBA) bearing a thiol. First, we modified a 3-mm-diameter Au electrode with a DTBA-PBA self-assembled monolayer (SAM) to confirm the VCM response of the PBA interface by cyclic voltammetry. DTBA-PBA was then immobilized in the same manner on a nanopore pipette coated with an Au layer. We measured the VCM concentration from the change in ion current using the nanopore pipette. A VCM concentration-dependent ionic current response was observed in the range of 0.01–1 mM. Many kinds of pharmaceuticals can bind to PBA; therefore, this method could be used for quick, easy, in situ quantification of not only VCM but also other pharmaceuticals with serious side effects.</p>\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"35 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elan.202300173\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202300173","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米孔传感是通过离子电流的变化来测量纳米孔周围电荷和物理状态的变化。在这项研究中,我们通过Au - S键修饰纳米孔,用含有硫醇的苯基硼酸(PBA)的衍生物二硫比斯(4-丁基氨基-间苯硼酸)(DTBA-PBA)进行万古霉素(VCM)传感。首先,我们用DTBA-PBA自组装单层(SAM)修饰直径为3mm的Au电极,通过循环伏安法确认PBA界面的VCM响应。然后以同样的方式将DTBA-PBA固定在涂有Au层的纳米孔移液管上。我们利用纳米孔移液管通过离子电流的变化来测量VCM的浓度。在0.01 ~ 1 mM范围内观察到与VCM浓度相关的离子电流响应。多种药物可与PBA结合;因此,该方法不仅可用于VCM的快速、简便的原位定量,也可用于其他有严重副作用的药物的定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vancomycin sensing using a phenylboronic acid-modified nanopore pipette

Nanopore sensing measures the changes in charge and physical state around the nanopores as changes in ionic current. In this study, we performed vancomycin (VCM) sensing with nanopores modified via Au−S bonds with dithiobis(4-butyrylamino-m-phenylboronic acid) (DTBA-PBA), a derivative of phenylboronic acid (PBA) bearing a thiol. First, we modified a 3-mm-diameter Au electrode with a DTBA-PBA self-assembled monolayer (SAM) to confirm the VCM response of the PBA interface by cyclic voltammetry. DTBA-PBA was then immobilized in the same manner on a nanopore pipette coated with an Au layer. We measured the VCM concentration from the change in ion current using the nanopore pipette. A VCM concentration-dependent ionic current response was observed in the range of 0.01–1 mM. Many kinds of pharmaceuticals can bind to PBA; therefore, this method could be used for quick, easy, in situ quantification of not only VCM but also other pharmaceuticals with serious side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
期刊最新文献
Cover Picture: (Electroanalysis 11/2024) RETRACTION: Copper Oxide Nanoparticles with Graphitic Carbon Nitride for Ultrasensitive Photoelectrochemical Aptasensor of Bisphenol A Cover Picture: (Electroanalysis 10/2024) Perspectives on Photocatalytic Paper‐based Batteries Fueled by Alcohol Cover Picture: (Electroanalysis 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1