深度学习在恒星参数确定中的应用:ii -在AFGK恒星观测光谱中的应用

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Open Astronomy Pub Date : 2022-10-31 DOI:10.1515/astro-2022-0209
M. Gebran, F. Paletou, I. Bentley, Rose Brienza, Kathleen Connick
{"title":"深度学习在恒星参数确定中的应用:ii -在AFGK恒星观测光谱中的应用","authors":"M. Gebran, F. Paletou, I. Bentley, Rose Brienza, Kathleen Connick","doi":"10.1515/astro-2022-0209","DOIUrl":null,"url":null,"abstract":"Abstract In this follow-up article, we investigate the use of convolutional neural network for deriving stellar parameters from observed spectra. Using hyperparameters determined previously, we have constructed a Neural Network architecture suitable for the derivation of T eff {T}_{{\\rm{eff}}} , log g \\log g , [ M / H ] \\left[M\\hspace{0.1em}\\text{/}\\hspace{0.1em}H] , and v e sin i {v}_{e}\\sin i . The network was constrained by applying it to databases of AFGK synthetic spectra at different resolutions. Then, parameters of A stars from Polarbase, SOPHIE, and ELODIE databases are derived, as well as those of FGK stars from the spectroscopic survey of stars in the solar neighbourhood. The network model’s average accuracy on the stellar parameters is found to be as low as 80 K for T eff {T}_{{\\rm{eff}}} , 0.06 dex for log g \\log g , 0.08 dex for [ M / H ] \\left[M\\hspace{0.1em}\\text{/}\\hspace{0.1em}H] , and 3 km/s for v e sin i {v}_{e}\\sin i for AFGK stars.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"32 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep learning applications for stellar parameter determination: II-application to the observed spectra of AFGK stars\",\"authors\":\"M. Gebran, F. Paletou, I. Bentley, Rose Brienza, Kathleen Connick\",\"doi\":\"10.1515/astro-2022-0209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this follow-up article, we investigate the use of convolutional neural network for deriving stellar parameters from observed spectra. Using hyperparameters determined previously, we have constructed a Neural Network architecture suitable for the derivation of T eff {T}_{{\\\\rm{eff}}} , log g \\\\log g , [ M / H ] \\\\left[M\\\\hspace{0.1em}\\\\text{/}\\\\hspace{0.1em}H] , and v e sin i {v}_{e}\\\\sin i . The network was constrained by applying it to databases of AFGK synthetic spectra at different resolutions. Then, parameters of A stars from Polarbase, SOPHIE, and ELODIE databases are derived, as well as those of FGK stars from the spectroscopic survey of stars in the solar neighbourhood. The network model’s average accuracy on the stellar parameters is found to be as low as 80 K for T eff {T}_{{\\\\rm{eff}}} , 0.06 dex for log g \\\\log g , 0.08 dex for [ M / H ] \\\\left[M\\\\hspace{0.1em}\\\\text{/}\\\\hspace{0.1em}H] , and 3 km/s for v e sin i {v}_{e}\\\\sin i for AFGK stars.\",\"PeriodicalId\":19514,\"journal\":{\"name\":\"Open Astronomy\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/astro-2022-0209\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0209","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要在这篇后续文章中,我们研究了使用卷积神经网络从观测光谱中推导恒星参数。使用之前确定的超参数,我们构建了一个适用于推导T eff的神经网络架构{T}_{\rm{eff}},log g\log g,[M/H]\left[M\hspace{0.1em}\text{/}\space{0.1em}H]和v e sin i{v}_{e} 我。通过将网络应用于不同分辨率的AFGK合成光谱数据库,对网络进行了约束。然后,从Polarbase、SOPHIE和ELODIE数据库中导出了A星的参数,以及从太阳系恒星光谱调查中导出的FGK星的参数。对于T eff,网络模型对恒星参数的平均精度低至80K{T}_{\rm{eff}},log g\log g为0.06 dex,[M/H]\left[M\hspace{0.1em}\text{/}hspace为0.08 dex{0.1em}H],对于v e sin i为3 km/s{v}_{e} \sin i代表AFGK明星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning applications for stellar parameter determination: II-application to the observed spectra of AFGK stars
Abstract In this follow-up article, we investigate the use of convolutional neural network for deriving stellar parameters from observed spectra. Using hyperparameters determined previously, we have constructed a Neural Network architecture suitable for the derivation of T eff {T}_{{\rm{eff}}} , log g \log g , [ M / H ] \left[M\hspace{0.1em}\text{/}\hspace{0.1em}H] , and v e sin i {v}_{e}\sin i . The network was constrained by applying it to databases of AFGK synthetic spectra at different resolutions. Then, parameters of A stars from Polarbase, SOPHIE, and ELODIE databases are derived, as well as those of FGK stars from the spectroscopic survey of stars in the solar neighbourhood. The network model’s average accuracy on the stellar parameters is found to be as low as 80 K for T eff {T}_{{\rm{eff}}} , 0.06 dex for log g \log g , 0.08 dex for [ M / H ] \left[M\hspace{0.1em}\text{/}\hspace{0.1em}H] , and 3 km/s for v e sin i {v}_{e}\sin i for AFGK stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Astronomy
Open Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍: The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.
期刊最新文献
A novel autonomous navigation constellation in the Earth–Moon system Asteroids discovered in the Baldone Observatory between 2017 and 2022: The orbits of asteroid 428694 Saule and 330836 Orius Intelligent collision avoidance strategy for all-electric propulsion GEO satellite orbit transfer control Stability of granular media impacts morphological characteristics under different impact conditions Parallel observations process of Tianwen-1 orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1